Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность полимеров растворенного вещества

    Многие полимеры не имеют четких линий поглощения, образуя так называемый фон однако часто этот фон настолько незначителен, что он не мешает непосредственному измерению оптической плотности раствора в максимуме полос поглощения, характерных для определяемых веществ (добавок, групп полимера и т. п.). В тех случаях, когда фон значителен, измерения следует проводить методом базовой линии или методом гетерохроматической экстраполяции, по возможности исключающими влияние фона на результаты анализа. [c.200]


    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]

    Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости б (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств. [c.41]


    Уравнение Эйнштейна означает, что характеристическая вязкость раствора сплошных невзаимодействующих частиц (не обязательно сферических, тогда коэффициент 2,5 будет другим) определяется только плотностью вещества и не зависит от молекулярной массы и размеров частиц. Это происходит вследствие того, что масса таких частиц строго пропорциональна их объему. При этом т]пр постоянна в широком интервале концентраций, поскольку частицы предполагаются невзаимодействующими. Уравнению Эйнштейна (в первом приближении) подчиняются разбавленные растворы глобулярных белков разных молекулярных масс. Для всех этих систем [ti] са 0,04 дл/г независимо от молекулярной массы полимера. [c.99]

    В настоящее время еще невозможно точно установить связь между природой растворителя и его способностью растворять данное высокомолекулярное вещество." Обычно ограничиваются эмпирическим правилом — подобное растворяется в подобном. Иными словами, неполярные полимеры растворяются в неполярных растворителях, а полярные — в полярных. Джи установил связь между способностью растворителей вызывать набухание и растворение полимера и значениями плотностей когезионных энергий этих растворителей. Удельная плотность когезионной энергии /б мол (где — когезионная энергия или скрытая теплота испарения, мол — мольный объем) представляет собой энергию, которую необходимо затратить для того, чтобы раздвинуть молекулы, содержащиеся в 1 см полимера, на расстояние, превышающее сферу их действия. На ряде примеров было показано, что максимальное набухание наблюдается, когда удельные плотности когезионной энергии растворителя и полимера равны или близки. [c.445]

    Концентрацию при определении характеристической вязкости задают в г/дл. Плотность растворителя при температуре измерений может быть легко определена, (в том числе и по справочникам). Концентрацию определяют по известным весам компонентов (растворенное вещество и растворитель), полагая при этом аддитивность объемов. Для вычисления концентрации разбавленного раствора достаточно знать приблизительное значение плотности полимера при температуре измерений. [c.137]

    Метод экстракции полностью определяется способностью различных фракций полимера растворяться в данном веществе. Измерение кристалличности по плотности основывается на допущении о том, что образец состоит из полностью кристаллической части с плотностью, равной теоретической плотности, которая вычисляется по параметрам элементарной ячейки, и из полностью аморфного материала, плотность которого равна плотности атактического полипропилена. Кристалличность, определяемая, по дифракции рент- [c.352]

    Технический поливинилацетат представляет собой прозрачное бесцветное вещество без запаха и вкуса, молекулярный вес его от 3500 до 50 ООО. Плотность полимера 1,19 г/см . Поливинилацетат растворим в сложных эфирах, кетонах, ароматических углеводородах, хлорированных углеводородах, метиловом и этиловом спиртах, нерастворим в бензине растворимость его обусловлена степенью полимеризации. [c.66]

    Аморфные полимеры в виде пленок или достаточно больших пластинок могут быть исследованы на обычных рефрактометрах. Для определения молекулярной рефракции кристаллических полимеров и органических веществ измеряют показатели преломления и плотности их растворов точно известной концентрации, а затем вычисляют рефракцию растворенного вещества по правилу аддитивности [c.202]

    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]


    Одно из девяти сочетаний Г/Г в обычных условиях не может образовать коллоидной системы, так как газы при любых соотношениях дают истинные растворы. Однако и газы могут проявлять некоторые свойства коллоидных систем благодаря непрерывным флуктуациям плотности и концентрации, вызывающим неоднородности в системе. Ближе к коллоидным системам жидкие растворы, в которых молекулы растворителя и растворенного вещества значительно отличаются по размерам и природе. К таким растворам относятся растворы сильно ассоциирующих веществ и растворы полимеров, которые при определенных условиях могут образовывать ассоциативные и молекулярные гетерогенные дисперсные системы. Размеры молекул (ассоциатов) растворенного вещества иногда превышают размеры обычных коллоидных частиц. Эти системы обладают многими свойствами, характерными для типичных гетерогенно-дисперсных систем. Они как бы связывают в единое целое все дисперсные системы и указывают на непрерывность перехода от истинных растворов к истинным гетерогенным дисперсным системам. [c.14]

    Константы седиментации легко определяются экспериментально с помощью специальных аналитических центрифуг. В роторах этих центрифуг имеются небольшие вертикальные прорези, в которые помещены кюветы, заполненные раствором исследуемого полимера. Специальные оптические системы позволяют фотографировать границу седиментации, например, путем регистрации распределения оптической плотности вдоль кюветы, если наблюдение ведется за веществом, имеющим характерное поглощение в некоторой области видимого или ультрафиолетового спектра. [c.334]

    Если раствор, содержащий смесь полимеров с разными константами седиментации, нанести в центрифужной пробирке тонким слоем (зоной) на раствор более высокой плотности (в биохимии для этой цели используют раствор сахарозы), то в результате седиментации произойдет разделение молекул по их константам седиментации. В идеальном случае каждый из полимеров образует свою зону. После остановки ротора можно начать отсасывать содержимое пробирки по каплям в разные приемные пробирки и механически разделить образовавшиеся зоны и тем самым содержащиеся в них вещества. Поэтому седиментация является широко используемым методом разделения биополимеров. Для этих экспериментов необходимо пользоваться бакет-роторами, так как иначе из-за изменения направления поля при разгонке ротора может размыться исходный нанесенный слой раствора, а при остановке ротора дополнительно размоются образовавшиеся зоны разделенных биополимеров. [c.335]

    Молекулы растворителя в сольватной оболочке плотно упакованы благодаря ориентации их около сольватируемых групп макромолекулы, и, следовательно, растворитель в сольватной оболочке имеет более высокую плотность. В результате сжатия растворителя в сольватных оболочках на первой стадии набухания наряду с увеличением объема полимера наблюдается уменьшение суммарного объема всей системы. Сумма объемов полимера до набухания и поглощаемой полимером жидкости больше, чем объем набухшего полимера. Такое явление уменьшения объема системы при набухании вещества в раствори- [c.249]

    Описанная выше расчетная схема позволяет достаточно точно оценить вклад каждого атома и различных атомных группировок, обладающих специфическим межмолекулярным взаимодействием, в энергию когезии вещества. В связи с этим метод применяется и для расчета плотности энергии когезии полимеров, исходя только из химического строения повторяющегося звена. Результаты расчета для представителей разных классов полимеров приведены в табл. 7.5 вместе со значениями б, полученными в работе [87] на основании зависимости характеристической вязкости [ti] растворов полимеров в различных растворителях от параметра растворимости растворителя бр. [c.231]

    Для разбавленных растворов ряда ПАВ и ПЭ (например, ВРП-1, СФ-Li, AA, КМЦ-5 и др.) обнаружен эффект Томса — повышение скорости течения раствора с ростом концентрации полимера при постоянном градиенте давления, что обусловлено снижением гидродинамического сопротивления, изменением структуры потока жидкости и гидрофобным взаимодействием между молекулами воды и частицами растворенного вещества — изменением плотности упаковки воды в гидратном слое [71. [c.197]

    От указанных недостатков в значительной мере свободны более современные методы. Можно, например, с помощью снектро-фотометрии изучать изменение интенсивности полосы двойной связи мономера в инфракрасной области. Можно измерять высокочастотные диэлектрические потери в системе мономер—полимер, почти линейно зависящие от глубины полимеризации. Рациональный способ измерения кинетики заключается в калориметрическом определении количества выделяющегося при полимеризации тепла, для чего могут быть построены точные и автоматические приборы. Наконец, и методу дилатометрии придано сейчас новое, гораздо более совершенное техническое воплощение. Вместо измерения объема жидкости в сосуде с капилляром измеряют плотность в маленькой капле жидкости. Для этого капля размером в 1—2 мм подвешивается в градиенте плотности. Средой для капли, состоящей из органического растворителя, мономера и инициатора, служит водный раствор соли. Важно, чтобы растворимость всех компонентов капли в среде была ничтожно мала. В этом случае о ходе полимеризации можно просто судить но изменению плотности капли, т. е. по ее передвижению в трубке с градиентом плотности. Последний может создаваться либо с помощью градиента концентрации соли, либо с помощью градиента температуры. Чувствительность этого метода исключительно высока. Так, для 1%-го раствора мономера данная методика позволяет регистрировать глубину полимеризации до 0.1%. Благодаря работе с ничтожными количествами веществ легко обеспечить хороший отвод теплоты реакции. [c.224]

Рис. 11.26. Зависимость оптической плотности раствора гуминовых кислот при Я.=656 нм (а) концентрации в нем взвешенных веществ (б) и содержания свободного полимера ВА-2 (в) от дозы флокулянта ВА-2 Рис. 11.26. <a href="/info/357982">Зависимость оптической плотности раствора</a> <a href="/info/78264">гуминовых кислот</a> при Я.=656 нм (а) концентрации в нем взвешенных веществ (б) и <a href="/info/685483">содержания свободного</a> полимера ВА-2 (в) от дозы флокулянта ВА-2
    Клубкообразная модель [33, 34] предполагает гомогенность аморфной фазы гибкоцепных полимеров. Конфигурационное состояние цепи описывается, как и в разбавленном растворе, статистическим клубком. В пачечной модели предполагается, что аморфная фаза на молекулярном уровне гетерогенна и анизотропна и что существуют домены с жидкокристаллическим порядком. Эта модель основывается на следующих экспериментальных данных плотности аморфного и кристаллического веществ очень близки в электронном микроскопе в аморфных полимерах наблюдается глобулярная структура микроскопия затемненного поля зрения указывает на существование некоторого ориентационного порядка внутри этих глобул [35—38]. [c.30]

    Разновидностью метода фракционирования на колонке является гель-хроматография [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью чем чаще сетка, тем меньше критическое значение молекулярной массы. [c.83]

    Как известно, длинные цепные молекулы обладают гибкостью, а поэтому под влиянием теплового движения скручиваются. Именно этим обусловлено возникновение у полимеров высокоэластических свойств и аномалий их физических свойств. Способность ценных молекул изменять свою форму особенно резко проявляется в ориентационных явлениях при деформации аморфных и кристаллических полимеров, а также при течении растворов полимеров. Развившиеся за последние годы исследования формы цепных молекул в различных растворителях, возможность получения ряда линейных полимеров в глобулярной форме и другие экснеримептальные данные окончательно подтвердили гипотезу о легкой скручиваемости цепной молекулы. Это послужило основанием для развития современных представлений о характере расположения ценных молекул в аморфном полимере и о своеобразии упорядочения при кристаллизации полимера. Отсюда возникло представление о полимере как о системе хаотически спутанных, скрученных ценных молекул. Однако учет современных данных о строении вещества приводит к выводу, что упаковка хаотически скрученных цепных молекул, обладающих гибкостью вследствие вращения относительно С—С-связей, не может быть достаточно плотной, чтобы обеспечить наблюдаемые экспериментально значения плотностей полимеров. [c.108]

    Феноло-альдегидные полимеры. Твердые вещества окраска от светлой до темной лд=1,47—1,7 плотность 1,1—1,27 ej M . Большинство полимеров растворимо в этиловом спирте, пиридине, ацетоне, тетрахлорэтане. Отвержденные полимеры этого типа не растворяются ни в каких растворителях. Проба II иногда может быть отрицательной, но обычно дает слабо-розовую окраску. Проба VI дает запах фенола или формальдегида, образуется значительное количество дистиллята. Пробы IX, XII и XIV — положительные. [c.66]

    Двухкапиллярные пикнометры с успехом используются для определения плотности в широких температурных интервалах не только полимерных жидкостей и растворв полимерных веществ, но и многочисленных органических и неорганических соединений, металлических расплавов, а также летучих, ядовитых и агрессивных жидкостей. Однако при определении плотности расплавов веществ, твердых при комнатной температуре, двухкапиллярные пикнометры разрушаются при расплавлении этих веществ, затвердевших в приборе. Они оказываются непригодными также и для определения плотности некоторых растворов полимеров и суспензий (например, водных суспензий фторопластов), если в процессе определения плотности на внутренних стенках их оседают несмываемые пленки достаточной толщины. [c.173]

    Теперь ясно, что полимеры нельзя рассматривать как гомогенные системы. Присутствие надмолекулярных структур в них обусловливает наличие границ раздела, различие плотностей в объеме. Это неизбежно приводит к неравномерному распределению напряжений и к остаточным внутренним напряжениям. Гетерогенность полимеров должна сказываться и на процессах их набухания и пластификации. Вводимые в полимер низкомолекулярные вещества могут распределяться в нем различными способами. Наиболее обычным является равномерное распределение низкомолекулярного вещества во всем объеме полимера, что соотнетствует истинному растворению. В структурированных полимерах возникают и другие возможности. Если низкомолекулярное вещество не растворяется в полимере, но его смачивает, оно может распространяться по границам раздела структур, играя роль межструктур-ной смазки и повышая подвижность отдельных элементов структуры. В таком сл)гчае небольшие количества пластификатора могут вызывать большие эффекты. Такие явления особенно наглядно были показаны на примере эфиров целлюлозы. На рис. 54 представлена зависимость Тс нитрата целлюлозы от содержания различных нластификаторов. Для дибутилфталата, неограниченно растворяющегося в нитрате целлюлозы. Тс монотонно уменьшается пропорционально концентрации пластификатора. Касторовое масло не растворимо в нитрате целлюлозы. Введение его в полимер в небольших количествах резко понижает Тс, по действие его быстро достигает предела, и дальше Тс ие меняется. Но, как уже указывалось, следует учитывать, что небольшое количество низкомолекулярных веществ облегчает процессы возникновения высших структур. Это не опасно в аморфных полимерах, но в кристаллических может приводитк к резкому ускорению рекристаллизации и образованию крупных структур. [c.122]

    Подобно этилену полимеризуется и его фторированный аналог тетрафторэтилен СР2=СРг. Полимер (—СРг—СРг—) называется тефлоном. Он относится к разряду фторопластов - полимеров, получаемых из частично или полностью фторированных зтлево-дородов. Молекулярная масса тефлона достигает 2 10 г/моль, т. е. молекула состоит из 10-20 тысяч звеньев. Плотность тефлона (2,2 г/см ) значительно больше, чем полиэтилена. Это твердое белое чрезвычайно гидрофобное вещество с очень низким коэффициентом трения. По химической стойкости тефлон превосходит все известные материалы - на него не действуют ни кислоты, ни щелочи, он не подвержен окислению или восстановлению и не растворяется ни в одном из растворителей, что обеспечивает тефлону широкое применение. Из него делают антифрикционные детали машин, в химической промышленности тефлоном покрывают внутренние поверхности различных трубопроводов и реакторов, тефлоновые эмульсии используются для создания гидрофобных покрытий кузовов автомашин, обуви, посуды. [c.436]

    Растворимость и поглощение растворителей [39]. Растворитель, в котором полиформальдегид высокого молекулярного веса (>40 000) растворялся бы при комнатной температуре, не найден, несмотря на то что испытывалось 406 веществ, принадлежащих к 27 различным классам соединений. При температуре выше 80° полимер растворяется во многих органических растворителях, из которых наибольшей растворяющей силой обладают фенолы. Во многих фенолах полимер растворяется с образованием коллоидных растворов при температурах 50—100°. Истинные растворы получаются при температурах на 40—60° выше. Баркдалл и Макдональд [51] показали, что молекулярный вес полимера в растворах в ж-хлорфеноле, /г-хлорфеноле и бензиловом спирте не уменьшается. Поглощение полимером растворителя изучалось на примере 16 обычных органических растворителей. Построен график зависимости объема полимера при равновесном набухании при 60° от величины квадратного корня из плотности энергии когезии (ПЭК) растворителей (рис. 58). Показано, что ПЭК растворителя, отвечающая максимуму набухания, почти равна ПЭК полимера (124 кал/см ), оцененной Дюнкелем [52] в предположении об аддитивном вкладе атомных групп. [c.427]

    Кумароно-инденовые полимеры имеют плотность 1050— 1200 кг/м выпускают их в виде кусков или чешуек. При нагревании полимер дает своеобразный запах. Свойства этих полимеров определяются исходным сырьем, степенью его полимеризации и методом их производства. Отличительной особенностью кумароно-инденовых полимеров от других видов является их высокая устойчивость к омыляющим реагентам, в частности к действию 5%-ного раствора соды, 15%-ного раствора едкого натра и 10%-ного раствора аммиака. Практически значение чисел омыления кумароно-инденовых полимеров находится в пределах от 1 до 25, значение кислотного числа — от 1 до 20, йодного числа — от 23 до 39. Эти величины указывают на сравнительно небольшое количество непредельных веществ, способных присоединить иод или другие галоиды. Эти полимеры хорошо растворяются в бензоле, толуоле, в сольвентнафте и скипидаре. В ацетоне, серном эфире и трикрезилфос-фате кумароновые полимеры растворяются частично, в бензине они не растворяются. [c.140]

    Концентрирование сливкоотделение м. Процесс концентрирования сливкоотделением заключается во введении в латекс раствора сливкоотделяющего агента (обычно в количестве порядка десятых долей процента сухого вещества в расчете на водную фазу латекса) с последующим отстаиванием латекса. Повышение вязкости латекса, сопровождающее введение сливкоотделяющего агента, подавляет броуновское движение глобул полимера и приводит к слиянию их в агломераты, всплывающие в результате разности в плотности полимера и водной фазы. Так, в случае отечественного латекса СКД-1М процесс отстаивания обычно продолжается 50—70 ч, в результате чего образуется слой сливок с концентрацией 50—55% и серум. [c.490]

    Проследить влияние надмолекулярных структур на реакции с участием макромолекул — весьма трудная задача, потому что для выявления именно этого эффекта в изменении реакционной способности полимеров надо быть твердо уверенным в том, что все другие причины и в первую очередь диффузионные факторы сведены к нулю. Между тем высокая склонность макромолекул к упо-. рядочению, причем не только в твердой фазе, но и в растворах, приводит к резкому возрастанию диффузионных помех при изучении кинетики реакций, и часто именно эти процессы определяют суммарную скорость реакции. Повышение плотности полимера при кристаллизации, образование прочной сетки водородных связей, затрудняюш ей доступ низкомолекулярного реагента, залечивание пор и микротреш ип при отжиге — все это в первую очередь сказывается на скорости диффузии реагента через твердое полимерное вещество, если речь идет о гетерогенной реакции с участием твердого полимера. В результате меняется фактически не собственно реакционная способность макромолекулы или ее звена, а доступность этой макромолекулы по отношению ко второму реагенту. [c.271]

    VII. Основные технологические параметры ХТП и производства. В этом разделе наряду с указанием для каждого ХТП и аппарата основных технологических параметров (давление, температура, объемная и линейная скорости, степень насыщения, степень диспергирования, концентрации веществ в растворах, скорости расслаивания, размеры газанул и кристаллов, допустимое влагосодер-жание) отмечаются технологические условия приготовления и регенерации катализаторов, адсорбентов, растворителей и реагентов, которые осуществляются на данном объекте химической промышленности. Кроме того, приводятся сведения о механической прочности и гидравлическом сопротивлении применяемых катализаторов и адсорбентов условия образования осадков, полимеров и пены, методы предотвращения их образования и методы их удаления рекомендации по характеру перемешивания жидкостных сред рекомендации по значениям флег-мовых чисел и плотностей орошения для специальных процессов разделения [c.19]

    При седиментации каждая коллоидная частица или молекула растворенного полимера вытесняет в направлении, противоположном приложенной силе, объем растворителя, равный объему седи-ментируюшей частицы. Этот объем для частицы массой т равен тГуд, где Руд — удельный объем частицы в растворе (в случае растворенной частицы парциальный удельный объем — величина, аналогичная описанному в 9.5 парциальному молярному объему, но получающаяся дифференцированием полного объема по массе компонента раствора, в данном случае по массе полимера). Обратная величина называется плавучей плотностью вещества. Она [c.333]

    Флокуляция максимальна при одинаковом числе покрытых и непокрытых адсорбированными молекулами флокулянта частиц в системе, что объяснено на основании современных представлений о структуре адсорбционного слоя макромолекул и представлений о мостикообразовании [40, 41]. Адсорбированный на твердой поверхности полимер образует вблизи раздела фаз плотный слой, непосредственно примыкающий к поверхности, и слой обращенных в раствор хвостов и петель, распределение плотности которых убывает по экспоненциальному закону. При контакте частиц, содержащих достаточно толстые полимерные оболочки с длинными хвостами и петлями, с равным им числом свободных от молекул полимера частиц, создаются оптимальные условия для образования связи через адсорбированное высокомолекулярное вещество между поверхностью непокрытых и покрытых частиц, что и приводит к флокуляции. Поэтому эффективность флокуляции существенно зависит от способа смешивания раствора флокулянта с частицами золя. В этом отношении целесообразно использовать метод двойной добавки [42]. Суть метода сводится к тому, что добавлением исходного (незащищенного) золя объемом к определенному объему 1172 этого же коллоидного раствора, ко содержащего ад- [c.31]

    Коагуляция кремнезема. В кислом растворе коллоидные частицы кремнезема подвергаются флокуляции при воздействии полимерных веществ, способных образовывать водородные связи. Был перепробован большой ряд полимеров (в том числе поли-В1ШИЛ0ВЫЙ спирт), которые смешивались в условиях водной среды до или после процесса осаждения с целью получения тонкодисперсного кремнезема из раствора при низких значениях pH [428]. Алифатические амины с длинной цепью вызывают коагуляцию коллоидного кремнезема и приводят к образованию легкого, рыхлого порошка [429]. Катионные ПАВ адсорбируются на поверхности кремнезема и промотируют процесс коагуляции. Такой способ, использованный авторами работы [430], дает возможность получать тонкодисперсный чистый кремнезем из водной среды путем гидролиза этилсиликата аммиаком. Объемная плотность получаемого кремнезема составляла около 0,1 г/см . [c.778]

    Этот метод получил широкое распространение после появления полиэтилена высокой плотности. В качестве добавки, обеспечивающей набухание полимера и равномерность хлорирования, часто используют 1—20%-ный раствор метилсульфоксида [3, 19]. Для осуществления процесса применяют взвеси, содержащие от 5 до 20% ПЭ, суспендированного в воде [20], в водном 6—8 н. растворе НС1 [21—22], в концентрированной H2SO4 [23] или 0,5— 2%-ном водном растворе СаСЬ [23]. При этом обеспечивается стойкость суспензии к агломерации и образованию пены в процессе реакции. В реакционную смесь вводят до 2% поверхностно-активных веществ (лаурилсульфата натрия) [24], хлорированных алкилсульфатов натрия [25], мыл кислот фр. ie— is, олигоэфиров этиленгликоля [26], поли (оксиметилен) алкиловых эфиров [3, 6], а также олигогликольамина [21, 27]. [c.9]

    Наличие глобул в эпоксидных системах может быть связано с гетерогенностью процесса отверждения [1]. Светорассеяние отверждающихся эпоксидных систем начинает возрастать уже прн малых степенях превращения, задолго до точки гелеобразо-вания. По-видимому, в начале процесса в расплаве образуются более плотные структурные образования (кластеры), которые растут беспрепятственно до взаимного соприкосновения, после чего возникают стерические затруднения для продолжения образования пространственной сетки [1]. Как показано в [I, 51 — 53], в этом случае как исходные вещества, так и в еще большей степени продукты реакции склонны к ассоциации, что может облегчить кластерообразование в растворе и появление гетерогенности на ранних стадиях процесса отверждения. Таким образом, при отверждении в полимере возникают области с более плотной упаковкой, которые могут наблюдаться в виде глобул, и области с неравновесной упаковкой и напряженными цепями, представляющие собой межглобулярное пространство. Если это предположение правильно, то размеры глобул долл<ны сильно зависеть от условий отверждения и типа полимера, что не подтверждается экспериментальными данными [I]. Если в той и другой областях степень превращения, химическое строение полимера, значение Мс и структура пространственных циклов одинаковы, то фактически эта точка зрения мало отличается от флуктуационноп теории, которая предполагает наличие в пространственной сетке чередующихся областей с разной плотностью упаковки цепей, способных к перестройке без химических перегруппировок. [c.60]

    При выяснепин механизма проводимости полимеров очень важно получение прямых экспериментальных данных по подвижности носителей. Теоретически хорошо обоснован и достаточно надежен метод определения х с помощью инжекционных токов. Этот метод успешно применяется для определения подвижности электронов и дырок в органических твердых веществах с начала 50-х годов, в том числе в полимерах — с начала 60-х годов. Ионные инжекционные токи в полимерах стали интенсивно исследовать сравнительно недавно этому посвящены в основном наши работы. Успех этих работ определяется поиском эффективных инжектирующих ионы электродов. В качестве ионных эмиттеров использовались жидкие и твердые растворы электролитов, а также полимерные катионообменные мембраны [56]. Совершенно очевидно, что в этом случае создать на границе раздела эмиттер — диэлектрик бесконечно большую плотность ионного заряда практически невозможно. Теория ионных инжекционных токов для случая конечного значения рд была предложена независимо в работах [57,58]. В этих работах подвижность ионов определялась в основном из данных по нестационарным инжекционным токам путем измерения времени появления максимума тока, соответствующего времени перехода ионами межэлектродного расстояния Тп, по формуле  [c.75]

    По внешнему виду хлоркаучук представляет собой белый порошок с плотностью 1600 кг/м При нагревании хлоркаучук хорошо растворяется в сложных эфирах, кетонах, ароматических растворителях и совмещается со многими пленкообразующими веществами Поскольку хлоркаучуки образуют малоэластичные покрытия, их обычно пластифицируют хлорпарафинами и фталатами При добавлении синтетических полимеров (алкидных, фенолоформальдегидных, акриловых и др) увеличивается содержание нелетучих веществ в материале, повышаются адгезия и светостойкость покрытия [c.162]

    Чтобы получить исправленное осмотическое уравнение для растворов полимеров, необходимо рассчитать энтропию смешения полимера с растворителем. Для этого можно воспользоваться общими методами статистической механики без каких-либо специальных моделей (Зимм) [1]. Однако из соображений физической наглядности мы воспользуемся для расчетов введенной Хаггинсом и Флори моделью псевдорешетки [2]. Представим себе жидкость в виде правильной решетки, каждая клетка которой вмещает одну молекулу растворителя или равную ей по объему молекулу низкомолекулярного растворенного вещества (рис. 8). Решетка вовсе пе обязана быть кубической. Мы можем придать ей любую желаемую геометрическую форму, исходя из представления о координационном числе V, т. е. о числе ближайших соседей, окружающих каждую молекулу и образующих так называемую координационную сферу. Так, например, в гексагональной решетке v=12, в кубической — 6. Казалось бы подобная модель очень далека от истины, так как в жидкости расположение частиц беспорядочно. На самом деле это не так. Благодаря большой плотности жидкости, [c.43]

    Макромолекулы-клубки в первом приближении люжио считать шарообразными. На самом деле это не так, но в рассматриваемом приближении отступления клубка от шарообразной формы несущественны. Тогда мы можем применить к раствору полимера закон Эйнштейна, считая гидродинамический диаметр клубков равным среднему статистическому диаметру. При этом мы будем рассматривать каждую дгакродюлекулу как набухший в растворителе комочек, в котором вещество полимера составляет по объему (как уже упоминалось выше) всего лишь 0.1—1 %, а остальное — пронизывающий макромолекулу растворитель. Однако обтекаться жидкостью такие клубочки будут как компактные шарики соответствующего радиуса. Никакого протекания растворителя сквозь шарик не будет, и с этим эффектом можно не считаться. К такому заключению можно легко прийти, если проанализировать поведение гидродинамической модели макроскопического клубка той же плотности, что и макромолекула, в потоке жидкости. Мы подробно останавливаемся на этом вопросе, так как 10 лет тому назад он был предметом оживленной дискуссии и до сих пор в книгах можно найти формулы, относящиеся к про-текаемым клубкам. На самом деле подобные представления не оправдались и были отвергнуты.  [c.147]

    Выполненные намй опыты по флокуляции глинистых частиц анионными полимерами показали, что введение в воду, содержащую агрегативно-устойчивые отрицательно заряженные частицы ( -потенциал равен 32,4 мВ) альгината натрия, полиакриламида, сульфополистирола, карбокси-метилцеллюлозы и других анионных флокулянтов в диапазоне концентраций от 0,002 до 0,1 мг/мг твердой фазы не привело к флокуляции. После добавления флокулянтов не изменялась оп к ическая плотность растворов, не происходило хлопьеобразова-ние и осаждение взвешенных веществ, практически не наблюдалась адсорбция, мало изменялся электрокинетический потенциал. Все это указывало н а отсутствие какого- [c.94]


Смотреть страницы где упоминается термин Плотность полимеров растворенного вещества: [c.161]    [c.200]    [c.23]    [c.392]    [c.173]    [c.32]    [c.201]    [c.154]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.146 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Плотность полимера в растворе

Растворы полимеров



© 2025 chem21.info Реклама на сайте