Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды ряда бензола нитрование

    Циклические углеводороды. Изомерия и номенклатура ароматических углеводородов ряда бензола и нафталина. Характерные особенности ароматических углеводородов устойчивость ядра к окислению, реакции замещения (нитрование, сульфирование, галоидирование). Электрофильный механизм реакций замещения в ароматическом ряду. Ориентация, ориентанты первого и второго рода. Сравнение бензола и циклогексана. [c.218]


    Реакция нитрования практически необратима и скорость ее для ароматических углеводородов велика. Скорость нитрования производных бензола (как и сульфирования) зависит от имеющихся в бензольном ядре заместителей, которые могут быть размещены в следующий ряд  [c.522]

    Исходными продуктами при нитровании служат углеводороды ароматического ряда (бензол, толуол, нафталин и т.д.), а также их замещенные (сульфокислоты, хлорпроизводные, амино- и гидроксипроизводные). В качестве нитрующих агентов применяют смесь азотной и серной кислот (меланж), азотную кислоту, смесь азотной и уксусной кислот, селитру в смеси с серной кислотой. [c.56]

    В ряде работ исследовалось влияние соли ртути при нитровании ароматических углеводородов двуокисью азота. Еще в 1907 году запатентован метод получения нитрофенолов из бензола и двуокиси азота в присутствии азотнокислой ртути . Аналогичные работы проведены Захаровым с нафталином при нитровании окислами азота в среде четыреххлористого углерода, в при- [c.227]

    Приложение реакции Коновалова к циклопарафинам дало возможность установить состав ряда нефтяных углеводородов [58]. Подробное изучение взаимодействия азотной кислоты с ароматическими углеводородами [59] позволило вскрыть особенности изомеризации в процессах синтеза производных бензола [60] методом алкилирования. Универсальный способ нитрования был расширен М. И. Коноваловым и применен к олефинам [61], галоидопроизводным [62], спиртам [63], кетонам [64] и т. д. [c.88]

    В качестве исходного сырья для производства ароматических нитросоединений используют бензол, хлорбензол, толуол, нафталин, сульфокислоты нафталина, другие углеводороды и их производные. Нитрованием получают ряд важных полупродуктов, широко используемых в химической промышленности (нитробензол, динитробензол, нитротолуолы, нитронафталины, нитро-хлорбензолы, нитросульфокислоты нафталина и др.). [c.45]

    Реакции замещения ядра. Выше был приведен ряд реакций функциональной группы ОН. Однако для фенолов характерны также реакции ароматического ядра, главным образом реакции замещения. Последние протекают значительно легче, чем у ароматических углеводородов. Нитрование фенола можно осуществить разбавленной азотной кислотой, тогда как в случае бензола необходима смесь азотной и серной кислот. Таким образом, группа ОН является заместителем, активирующим содержащее ее ядро. Новые заместители входят в орто- и пара-положения относительно фенольного гидроксила. [c.475]


    В этой же главе описаны и другие, еще мало изученные реакции конденсации, происходящие в присутствии хлористого алюминия, а именно получение кетонов при реакции алифатических или ароматических карбоновых кислот с ароматическими углеводородами, алкилирование ароматических уг.леводородов простыми алифатическими эфирами, перекрестная этерификация между различными органическими соединениями и нитрование соединений ряда бензола окислами азота. [c.668]

    Бензол, толуол, нафталин, антрацен и другие исходные вещества, получаемые из каменноугольной смолы, превращаются в красители через стадию различных промежуточных продуктов. Последние получаются рядом реакций, таких как сульфирование, щелочное плавление, нитрование и восстановление, хлорирование, окисление, конденсация. Эти процессы могут быть названы общими процессами органического синтеза. С помощью этих методов в первичные углеводороды вводятся сульфо-, окси-, алкокси-, амино-и другие группы, В ряде случаев, например, при получении антрахинона и его производных из нафталина через фталевый ангидрид, происходит синтез новых кольцевых систем. Химия промежуточных продуктов для красителей включает почти всю химию ароматического ряда и многие из промежуточных продуктов широко используются вне производства красителей. [c.68]

    Продолжая исследования в этом направлении, русские химики (А. Н. Энгельгардт, П. А. Лачи-. нов, П. П. Алексеев, М. Г. Кучеров и др.) выполнили ряд крупных работ по синтезу различных соединений ароматического ряда. Укажем, в частности, на цикл исследований (Н. Н. Соколова, Ф. Ф. Бейль-штейна) по хлорированию, нитрованию и сульфированию бензола, толуола и их производных, на работу по химии и технологии антрахинона (М. А. Ильинский), по ароматизации углеводородов нефти (А. Никифоров). [c.379]

    Скорость изотопного обмена водородом между углеводородами и их производными и водой в кислой среде выявляет основность углеводородов, в щелочной среде — их кислотность, а это связано с электронной плотностью вблизи данного атома водорода и, следовательно, с его реакционной способностью в данном положении в молекуле. Действительно, скорость обмена совпадает с легкостью протекания реакций алкилирования жирноароматических углеводородов олефинами, нитрования, сульфирования и галоидирования ароматических углеводородов. Скорость обмена водородом производных бензола в орто-положении зависит от характера заместителя и меняется в ряду Р > СРз > > ОСбНб > СбН5 > N(СНз)г > Н > СНз, что связано с электронной плотностью у атома водорода. Чем левее заместитель в вышеприведенном ряду, тем больше оттянуты электроны к углероду, а в случае заместителя СНз электронная плотность у водорода увеличивается и скорость обмена уменьшается. Уменьшается и реакционная способность водорода в орто-положении. Скорость обмена галоидными атомами галоидорганических соединений с ионами галоидов совпадает со скоростями реакций замещения галоидов на другие галоиды, гидроксил, ОСНз-группу и т. п. [c.506]

    В ряде других европейских нефтей также обнаружены отдельные представители углеводородов ароматического ряда. Так, например, в румынской нефти путем нитрования обнаружены бензол, толуол, м-ксилол, мезитилен и кумол [7]. В галицийской (Зап. Украина) кроме бензола, толуола, м-ксилола и мезитилена найден также п-ксилол [8]. Имеются указания на присутствие ароматических углеводородов также в ганноверской [9] ж некоторых других европейских нефтях (Те-гернзее в Баварии, Парма в Италии и др.). [c.97]

    Нитрование тетрафторборатом нитрония в растворе тетраметиленсульфона исследовано для ряда ароматических углеводородов [3, 4]. Если принять реакционную способность бензола за 1, то активность толуола в этой реакции равна 1,67, ж-ксилола — 1,65 и мезитилена — только 2,71. Такое чрезвычайно малое влияние метильных групп аналогично их влиянию на стабильность я-комплексов. Это позволяет предположить, что в данном случае переходное состояние подобно я-комплексу, однако сами по себе эти данные еще не доказывают такую точку зрения. Возможно и другое объяснение лимитирующей стадией является образование о-комплекса, но переходное состояние возникает очень рано, когда на бензольном кольце сосредоточен малый положительный заряд. Однако попытка подсчитать факторы парциальных скоростей убеждает в том, что эта схема ошибочна. Нитрование толуола протекает на 65,4% для замещения в орто-положение, на 31,8% для замещения в пара-положение и только на 2,8% для замещения в мета-положение. Фактор парциальной скорости для мета- [c.195]

    Способ фракционированной перегонки с собиранием узких погонов привели В. В. Марковникова к важному наблюдению, что бензол может перегоняться совместно с другими углеводородами, кипящими значительно ниже самого бензола. В этом факте А. Ф. Платэ и М. С. Эвентова [172] усматривают открытие В. В. Марковниковым азеотропных смесей, образуемых ароматическими углеводородами с другими соединениями. В. В. Марковников выделил (через сульфокислоты) из нефтяных фракций длинный ряд индивидуальных ароматических углеводородов бензол, толуол, ди-этилбензол, диэтилтолуол,изоамилбензол, дурол и др. Высокое содержание ароматических углеводородов, в частности бензола, в грозненском бензине, дало основание В. В. Марковникову рекомендовать прямое нитрование бензина с целью получения нитробензола [173]. Это предложение позже было внедрено в промышленность. [c.114]


    При действии двуокиси азота на олефины получается смесь различных продуктов присоединения, между тем как в ароматическом ряду только высщие углеводороды, начиная от нафталина, дают нитродигидропроизводны е, которые легко расщепляются с образованием нитроуглевод ю-родов и азотистой кислоты. Анилин и фенолы также легко реагируют с двуокисью азота soo. Изучением процесса нитрования бензола, толуола и других углеводородов двуокисью азота в газообразной фазе при 14—15° занимались Шорыгин и Топчиев . Из пиридина при 115—120° при этом получается р-н и т р оо и р и д и н, а из хинолина при 95—100°—7-н и т р о х и н о л и н. О нитровании толуола двуокисью азота при действии света, в темноте и при н,а-гревании до 108° см. работы Титова [c.301]

    Совсем другое положение заняли реакции нитрования, которые были открыты Митчерликом в 1834 г. Благодаря работам Зинина и Гофмана ароматические нитросоединения стали источником получения аминосоединений и далее всевозможных азокрасителей, а процессы нитрования бензола и его гомологов сделались ооэтому предметом многочисленных исследований. Это обстоятельство сразу выдвинуло реакции нитрования по сравнению с реакциями галогенирования и даже окисления на первое. место. Ввиду того что азотная кислота при обыкновенной температуре на парафины почти не действовала, а при нагревании вызывала деструктивное окисление, применительно к парафиновым углеводородам реакции нитрования долгое время считались бесперспективными. В 1889 г. Коновалов нашел способ нитрования также и парафинов, что вызвало ряд новых исследований процессов нитрования. Если учесть при этом, что хлорирование и вообще галогенирование парафинов приводило, как правило, к сложной смеси продуктов, а реакция Коновалова была более из бирательной, то нетрудно понять, почему Марковников и Коновалов на нитрование возлагали большие надежды в смысле перевода парафинов и нафтенов в более ценные продукты нитрование по способу Коновалова они назвали оживлением химических мертвецов. [c.302]

    В настоящее время в качестве возможных промежуточных соединений рассматривается лишь я- или а-комплекс. Все большее число фактов свидетельствует в пользу того, что во всех реакциях замещения именно образование а-комплексов является стадией, определяющей скорость реакции. Это вовсе не исключает возможности образования я-комплексов до образования а-комплексов или после него, однако до сих пор не известно, является ли образование я-комплексов необходимой стадией в ходе реакций замещения. Следует отметить, что в ходе реакции может происходить не только образование я-комплексов, но, как отмечают де ла Мар и Ридд [17а], комплексообразование может сказываться и на переходном состоянии и вследствие этого оказывать влияние на общую скорость реакции. Если различия между я- и а-комплексами представлять как различие в степени возмущения ароматической системы я-электронов, как это показано первоначально на примере поведения углеводородов во фтористоводородной кислоте [19], то можно предположить существование ряда взаимно превращающихся комплексов с постепенно увеличивающимся внедрением электрофильного агента в облако я-электронов ароматической системы, зависящее от электрофильности замещающего агента и основности субстрата. Представление о симметричном я-комплексе, первоначально предложенное Дьюаром, в дальнейшем было видоизменено и развито. Уже Меландер [2] отмечал, что ароматическое я-электронное облако несимметрично в производных бензола. Поэтому маловероятно, чтобы электрофильный агент занимал место в центре бензольного кольца, где имеется самая низкая электронная плотность. Наиболее вероятно, что акцептор в я-комплексе находится у периферийных атомов углерода, несущих наиболее высокую электронную плотность. Позднее Браун и Юнг [76] пришли к подобному же выводу при изучении изомеризации алкилбензолов и постулировали локализованные я-комплексы как промежуточные соединения с высокой энергией. Недавно Дьюар [25] указал, что геометрия я-ком-плексов зависит от природы свободной орбитали акцептора. Если это орбиталь а-типа, как это бывает в реакциях нитрования или Фриделя — Крафтса, то электрофильный агент Е+ будет присоединяться выше или ниже бензольного кольца к одному из атомов углерода. Если свободной является, [c.462]

    Шааршмидт и Смолла нитровали ряд ароматических соединений жидкой N20 на холоду при соотношении 1 часть N30 на 3 части углеводорода. Бензол дает при нитровании нитробензол, пикриновую кислоту и в небольшом количестве динитробензол при действии N304 на толуол продуктами реакции являются нитротолуол, динитрокрезол, нхтерофенол, бензальдегид, щавелевая и бензойная кислоты. С увеличением продолжительности реакции значительно повышается относительный выход бензойной кислоты, а выход нитропроизвод-ных несколько понижается. [c.164]


Смотреть страницы где упоминается термин Ароматические углеводороды ряда бензола нитрование: [c.48]    [c.199]    [c.61]    [c.61]    [c.97]    [c.11]   
Основные начала органической химии Том 2 1957 (1957) -- [ c.220 , c.246 , c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол нитрование

Углеводороды ряда

бензола углеводородов



© 2024 chem21.info Реклама на сайте