Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенол также нефть, фенолы

    Для повышения эффективности газо- н нефтедобычи применяют различные химические реагенты, полученные на базе углеводородов нефти и газа (углеводородные растворители, поверхностно-активные вещества, полимерные реагенты и т. д.), а также отходы производства синтетических жирных кислот и высших жирных спиртов (включая кислые стоки), синтетических каучуков и полиолефинов, побочные продукты производства алкил-ароматических углеводородов, фенола и ацетона, мономеров для синтетического каучука и др. [c.184]


    Неионогенные ПАВ в водных растворах ионов не образуют. К их числу относятся продукты конденсации окиси этилена с октил-фенолами (деэмульгаторы ОП-4, ОП-7, ОП-10 и др.), а также окси-этилированные синтетические жирные кислоты фракции выше Сао (ОЖК), спирты (ОЭС), блокполимеры окиси пропилена и окиси этилена. Расход ОЖК при обессоливании нефтей на нефтезаводах составляет 20—40 г/т. Деэмульгирующая способность неионогенных ПАВ, синтезированных из жирных кислот, находится в зависимости от соотношения между молекулярным весом и длиной оксиэтиленовой цепи. Чем больше молекулярный вес кислот, тем эффективнее получаемый на их основе деэмульгатор. Большую активность проявили растворы аммонийных солей сульфокислот в сочетании с ОЖК. [c.182]

    Степень извлечения низкоиндексных компонентов зависит от расхода растворителя, определяемого сочетанием его растворяющей способности и избирательности, химическим составом сырья и требуемой степенью очистки. С повышением пределов выкипания масляных фракций в их составе -увеличивается содержание полициклических ароматических и нафтено-ароматических углеводородов, а также смол и серосодержащих соединений, подлежащих удалению. Поэтому при прочих постоянных условиях (температуре, способе экстракции) расход растворителя, необходимый для очистки, увеличивается по мере утяжеления сырья. В то же время при увеличении кратности растворителя к сырью выход рафината уменьшается, одновременно изменяются его химический состав, а следовательно, и свойства. На рис. 21 и 22 показано влияние кратности растворителя на показатели селективной очистки дистиллята одной из восточных нефтей [19]. С увеличением расхода растворителя независимо от его природы выход рафината снижается, а его индекс вязкости растет. Однако при практически одинаковой кратности растворителя к сырью выход рафината заметно ниже в случае очистки фенолом. Высокая растворяющая способность фенола при средней его избирательности приводит к большему извлечению смолистых веществ от их потенциального содержания в дистилляте (см. кривые 4) и большему переходу в экстракт парафино-нафтеновых компонентов (см. кривые 1). [c.94]

    В нефтепереработке основные проблемы коррозионного износа связаны с наличием сероводорода, образующегося при разложении сероорганических соединений нефти и присутствующего практически во всех процессах вместе с хлористым водородом, выделяющимся при пиролизе содержащихся в нефти хлористых солей (в виде эмульсии высокоминерализованной пластовой воды). Сероводород образуется также при разложении хлорорганических соединений. Кроме того, коррозия вызывается охлаждающей оборотной водой, содержащей кислород, растворенные газы, соли, примеси продуктов нефтехимпереработки и др. Различные коррозионные разрушения вызывают также реагенты, используемые при переработке сырья растворы щелочей, серная кислота, фенол, фурфурол, кетоны и т. д. [c.72]


    Турбинное и трансформаторное масла получают из качественных нефтей и для стабилизации подвергают усиленной очистке, обрабатывая фенолами, серной кислотой и щелочью, а также подвергают депарафинизации. Масла и керосины должны характеризоваться высокой степенью чистоты — полным отсутствием воды и механических загрязнений. Особенно важны такие показатели, как деэмульгирующая способность масел (8 мин) и их вязкость. Турбинное масло по техническим нормам должно иметь условную вязкость ВУ 3,0— 3,5° Е при 50° С. [c.31]

    Помимо кислот и фенолов в светлых дистиллятах присутствуют серосодержащие соединения, часть которых реагирует со щелочами и может быть извлечена. К этим соединениям в первую очередь относится сероводород. Он присутствует в легких дистиллятах в растворенном состоянии, а также образуется при взаимодействии элементной серы с парафиновыми и нафтеновыми углеводородами и при разложении высококипящих серосодержащих соединений в процессах перегонки нефти или крекинга нефтяных фракций. Сероводород реагирует с раствором едкого натра с образованием при избытке щелочи—сернистого натрия, при недостатке — кислого сернистого натрия  [c.53]

    Кислородсодержащие соединения представлены кислотами, фенолами, кетонами и эфирами. Они сосредоточены в высококипящих фракциях. Нефтяные кислоты в основном представлены цик-лопентан- и циклогексанкарбоновыми нафтеновыми кислотами обнаружены также алифатические кислоты с числом углеродных атомов 20—21. Содержание нефтяных кислот составляет 0,01 — 0,4%, а в бакинских и эмбенских нефтях достигает 0,8—1,7%. Фенолы в нефти содержатся в количестве 0,01—0,05%, [c.23]

    Фенолы также найдены в нефтях смолистого типа (Калифорния, японские нефти и т. п.). В меньших количествах они присутствуют и в метановых нефтях, где они составляют менее одной десятой доли от содержания нафтеновых кислот. Фенолы часто открывались в продуктах крекинга нефти, где они имеют, несомненно, вторичный характер и образуются в результате взаимодействия с воздухом, попадающим при перегонке с водяным паром, всегда содержащим воздух. [c.140]

    Фенольные соединения содержатся в нефтях в небольших количествах. Молекулы их состоят из ароматического кольца, к которому присоединена гидроксильная группа — ОН. В нефтях найдены фенолы и с двумя гидроксильными группами, а также эфиры фенолов, в которых атом водорода гидроксильной группы замещен углеводородным радикалом. [c.28]

    Фенол также не извлекает полностью смолистые соединения. Согласно данным адсорбционного анализа в очищенных и де-парафинированных маслах из туймазинской нефти содержится от 4,2 до 2,1% смол. [c.72]

    В бензиновых фракциях нефтей встречаются в малых количествах только алифатические кислоты нормального и слаборазветвленного строения. По мере повышения температуры кипения их фракций в них появляются алифатические кислоты сильноразветвленной структуры, например изопреноидного типа, а также нафтеновые кислоты. Последние составляют основную долю (до 90 %) от всех кислородсодержащих соединений в средних и масляных фракциях. Наиболее богаты ими бакинские, грозненские, эмбенские, сахалинские и бориславские нефти (содержание их достигает до 1,7 % мае.). Содержание фенолов в нефтях незначительно (до 0,1 % мае.). [c.44]

    СЯ эффективными ингибиторами окисления. Установлено также, что фенолы образуются и при омылении кислых смол спиртовым раствором едкого натра при нагревании. Например, в продуктах омыления спиртовой щелочью нефтей эхабинского и катанглийского месторождений найдены значительные количества фенолов (0,007—0,08% на нефть). [c.193]

    В нефтях содержатся также замещенные фенолы и даже обычный фенол [39], хотя он и растворим в воде. [c.26]

    Для синтеза вспомогательных дубильных материалов используются также простейшие фенолы и нафтолы, получаемые при переработке каменного угля или синтетическим путем из бензола и продуктов переработки нефти. Такие фенолы сульфируют, полученные при этом сульфопроизводные конденсируют и получают соединения типа [c.249]

    Показатель п ё. Информацию о присутствии в узких фракциях очищенных нафтеновых кислот соединений другого типа дает показатель п определяемый умножением показателей преломления кислот на их плотности (измеренные при одних и тех же температурах). Характеристика п <1 была обоснована и рассчитана для различных кислот-индивидуальных алифатических, циклоалифатических, ароматических, природных нафтеновых, а также для фенолов [11]. Так, изученные нафтеновые кислоты из техасских нефтей имели значения =1,394-1,48 (большая часть 1,41-1-1,44), ароматические кислоты и фенолы-п-й > 1,50, алифатические кислоты-п й = 1,386-1-1,395 для углеводородов п- = 1,28- -1,30. С увеличением молекулярной массы кислот показатель п-(1 постепенно возрастает, но для различных рядов кислот значения этого показателя сильно различаются и не перекрываются. В случае высокомолекулярных техасских би-, три-, тетра- и пентациклических нафтеновых кислот с увеличением длины боковых цепей показатель от 1,479 постепенно снижается до [c.9]


    Присутствие в нефтях кислот было обнаружено очень давно из-за высокой химической активности по сравнению с УВ. История обнаружения их в нефти такова. При получении керосина высокого качества для осветительных целей его обрабатывали щелочью (кислотно-щелочная очистка) и при этом наблюдали образование веществ, обладающих высокой эмульгирующей способностью. Впоследствии выяснилось, что эмульгаторами являются натриевые соли кислот, содержащихся в дистиллятных фракциях. Экстракция водными и спиртовыми растворами щелочей является и сегодня классическим приемом извлечения кислых компонентов из нефтей. В настоящее время методы выделения кислот и фенолов также основаны на взаимодействии их функциональных групп (карбоксильной и гидроксильной) с каким-либо реагентом. [c.30]

    В нефти и ее фракциях, особенно в продуктах крекинга, содерн атся фенолы, в первую очередь крезол, а также ксиленол с небольшим количеством высокомолекулярных фенолов. Из крекинг-продукта, кипящего в интервале 150—230 , выделяются фенолы, состоящие из 45% крезола, 25% ксиленола, 20% фенола и 10% загрязнений. Выделение производится экстракцией щелочью с последующим отделением карбоновых кислот и нейтральной части. От сернистых соединений фенолы освобождаются путем продувки воздуха через щелочной раствор. [c.275]

    Метод избирательного растворения начали применять на заводах, вырабатывающих смазочные масла, для разделения нефтепродуктов на химически однородные или близкие группы веществ лишь последние 20—25 лет. Между тем Харичков [26] 60 лет назад применил метод избирательного действия растворителей в лаборатории (назвав его методом холодной фракционировки ) в Грозном для разделения высокомолекулярных углеводородов, содержащихся в мазуте грозненской парафинистой нефти. Еще в 1915 г. был применен фенол как избирательно действующий растворитель для извлечения из угля органических веществ [27]. В 1947 г. Черножуков и Лужецкий [281 применили фенол также для разделения нефтяных смол. Использование избирательного действия растворителей в настоящее время играет значительную роль в процессах разделения нефти и, в особенности, высокомолекулярной ее части при изучении химического состава ее и в процессах переработки, особенно в производстве нефтяных смазочных масел. [c.117]

    Получаемые с помощью этой реакции фенолы, имеющие промышленное знйчение, являются в основном производными изобутилена, метилэтил-этилена и диизобутилена. Этими олефинами алкилируют фенол или крезолы, выделяемые из каменноугольной смолы или из некоторых фракций нефти (гл. 21, стр. 397). трет-Бутил фенол получают из фенола и изобутилена в присутствии серной кислоты. Источником изобутилена служит бутан-бутиленовая фракция крекинг-газов (гл. 7, стр. 127), из компонентов которой в условиях процесса реагирует только изобутилен. При высокой температуре трет-бутилфенол можно получить также из фенола и диизобутилена и из фенола и mpem-бутилового спирта или хлористого трет-бутила. При умеренной температуре фенол и диизобутилен реагируют с образованием 1,1,3,3-тетраметилбутилфенола (mpem-изооктилфенола)  [c.202]

    Методом газожидкостной хроматографии (ГЖХ) идентифицировано до 22 MOHO-, дикарбоновых и ароматических поликарбоновых кислот в продуктах окисления гуминовых кислот и фульвокислот. Метилирование ГК и ФК позволило подойти также к анализу фенольных структур обший выход поликарбоновых кислот при этом достигает 20 %. При анализе почв методом ГЖХ можно получить оперативную информацию о содержании различных ХЗВ, например пестицидов, фенолов, углеводородов нефти. [c.246]

    Богаче нафтеновыми кислотами нафтено-ароматические, смолистые нефти, более бедны ими парафиновые нефти. Из нефти и ее фракции удаляют нафтеновые кислоты обработкой растворами щелочи. Натриевые соли нафтеновых кислот являются ценным моющим средством для текстильных изделий, так называемый мылонафт. При подкисле-нии серной кислотой из натриевых солей выделяются свободные нафтеновые кислоты. Используются они в качестве антисептических средств для пропитки дерева и тканей. В нефтях имеются также высшие фенолы. [c.90]

    Сырьем для этих процессов могут служить широкая фракция, получаемая при жидкофазной гидрогенизации твердых горючих ископаемых, а также смолы или тяжелые нефтепродукты, выкипающие в зависимости от их природы до 300—350 °С. Широкая фракция, полученная при гидрогенизации твердых топлив, содержит значительные количества непредельных и ароматических соединений и иногда до 10—12% фенолов. В ряде случаев наряду с широкой фракцией на дальнейшую переработку в газовой фазе направляют бензин, так как вследствие большой неиредельности он не может служить целевым продуктом. Не исключена возможность непосредственного использования в газовой фазе (минуя жидкую) средних фракций с к.к. = 300—325 °С, получаемых при разгонке смол и нефтей. [c.210]

    Бензол, Н Ог Катал Фракция каталитического крекинга нефти Фенол итическая перера сложно Нефтеполимерные смолы А1СЦ 3—10° С, 6 ч, затем 10—24° С, 1 ч. Выход 47% [1721] [ботка технического сырья го состава AI I3 (1%) 50—60° С, время контакта 15 мин [1722]. См. также [1723, 1724] [c.225]

    Кроме кислот и фенолов, в нефти находятся также какие-то эфирообразные соединения, способные омыляться при нагревании со спиртовой щелочью. Их присутствие было обнаружено на основе заметного превышения коэффициента омыления некоторых нефтей по сравнению с их кислотностью, причем разность (эфирное число) для тяжелых нефтей может достигать здесь нескольких единиц (в мг КОН на 1 г нефти). Химическая природа и состав этих эфирообразных соединений ближе пока не изучены. По мнению некоторых авторов [4И, они напоминают собой те воскообразные соединения, которые встречаются в буром угле и по своему происхождению могут быть связаны с воскообразными веществами некоторых водорослей. [c.230]

    При обработке нефтяных дистиллятов щелочью (едким натром) последняя извлекает из очищаемого продукта наряду с фенолами, сульфокислотами и их эфирами также и нафтеновые кислоты (что особенно характерно для советских нефтей). Промывная щелочь одновременно обогащается меркаптидами и другими органическими соединениями серы, в меньшей степени — жирными кислотами. После полной отработки циркулирующей щелочи ее обычно сбрасывают в виде сточных вод. Если же подвергнуть отработанную щелочь выпариванию, то из нее можно получить натриевые соли нафтеновых кислот. Последние могут найти применение в качестве пенообразующего и моющего средства в мыловаренной и текстильной промышленности, а также в качестве покрытия, пропиточной массы и т. д. Все же отрицательным, с точки зрения применения натриевых солей нафтеновых кислот, является их неприятный занах. При нейтрализации отработанной щелочи кислотой (отработанной серной кислотой) выделяются свободные фенолы, которые требуют специальных мер для их уничтожения. [c.446]

    Сильно загрязняются природные водоемы также нефтью и сточными водами нефтеперерабатываюших заводов, содержащими различные продукты переработки нефти (нафтеновые кислоты, сернистые соединения, меркаптаны, азотистые соединения, смолистые вещества, а также органические и неорганические соли, фенолы и их производные, сероводород и его соли, соединения мышьяка и свинца, кислоты, щелочи и пр.). [c.11]

    ОП-10, арквад Т-50 и др.), не дают положительных результатов, в то время как введение в углеводородную фазу 0,01—0,1% маслорастворимых ингибиторов коррозии (арквад 2С, армии С и др.) уменьшает коррозию стали в 30—40 раз как в углеводородной, так и в водной среде [12]. В работах Дж. Брегмана [26], И. Н. Путиловой, С. А. Балезина [7], В. Ф. Негреева [11] и других исследователей также показано, что в аналогичных системах маслорастворимые ингибиторы коррозии значительно более эффективны, чем водорастворимые. Аналогичные результаты получены нами при исследовании коррозии чугуна, стали, алюминия и меди в смеси нефти и воды. Ингибирование воды нитритом натрия, препаратом АМБА-10 и пиконом (основа — аммонийные соли СЖК), неионо-генными ПАВ типа оксиэтилированных фенолов также не дало положительных результатов, причем в некоторых случаях коррозия чугуна и меди в нефтяной зоне даже увеличивалась. Применение водомаслорастворимых ингибиторов коррозии (натриевой соли нитрованного окисленного петролатума, среднемолекулярных сульфонатов натрия) и особенно маслорастворимых (сульфонатов, нитрованных масел, нитрованных фенолов) обеспечило защиту как черных, так и цветных металлов в нефтяной и в водной фазах [121—126]. [c.143]

    Согласно современным воззрениям на происхождение нефти, считается доказанным, что первичным процессом является образование протонефти или материнского вещества нефти при анаэробном биохимическом цревращении животных и растительных остатков в смеси с глиной, песком, известковыми отложениями и другими породами. Восстановительная среда, создающаяся при таких условиях, способствует биохимическому превращению, которое, по мнению Стадникова [1], протекает в сторону декарбоксилирования полимеризатов жирных кислот, декарбоксилирования гуминовых кислот, растворенных и диспергированных в смеси ВОСКОВ, смол и неизмененных жирных кислот в виде гомогенной полужидкой массы. Теория Берля [2] возникновения протонефти при щелочном гидролизе целлюлозы под действием щелочей и карбонатов несомненно также указывает направление, по которому может протекать процесс образования нефти. Однако эти теории, освещая первую стадию процесса нефтеобразования, не дают возможности объяснить дальнейшее превращение органического вещества в продукты, составляющие нефть. Предположение Берля [2] о восстановлении протонефти водородом, образующимся при действии воды на закись железа или сернистое железо, не было экспериментально подтверждено. Протонефть Берля, жидка часть которой содержала спирты, кетоны и непредельные соединения, образовывалась при температурах выше 300° при более низких температурах процесс не шел в сторону образования не растворимых в водо продуктов. Целый ряд фактов неопровержимо свидетельствует о том, что нефтеобразование могло протекать при температурах порядка 150—250°. Присутствие в нефти порфиринов, неустойчивых свыше 250°, обнаруженная Трайбсом [3] оптическая активность отдельных нефтяных фракций, исчезающая при высоких температурах вследствие рацемации [4], отсутствие в нефти фенолов, кислот, непредельных соединений [4, 5], кокса или обуглероженных остатков [6], исключающее возможность пирогенетических превращений, заставляют предполагать наличие особых процессов, протекающих в области низких тедшератур. [c.260]

    К числу кислородосодержащих соединений относятся и фенолы. Сам фенол в нефтях не обнаружен, но выделены из нефтей его гомолога все три крезола, ксиленолы, диэтилфенол, триэтилфенол. В нефтях обнаружены также нафтолы. [c.37]

    Эти смолы характеризуются также более высоким содержанием серы, кислорода и азота по сравнению со смолами, остающимися в рафинате, что хорошо согласуется с данными Н. И. Черножукова, А. А, Лужецкого, Г. А. Тилюпо и других исследователей, проводивших фракционировку фенолом смол, выделенных из других нефтей. [c.118]

    Переходя к вопросам химии топлива, я должеп отметить, что сейчас наибольшее внимание уделяется нефти и получению различных продуктов из углеводородов. В то же время важное значение в химии имеет твердое топливо и, в частности, такое дешевое и распространенное, как торф. Торф является не только углеводородным сырьем. Это также кислоты, фенолы, это азотистые вещества, виски, а также некоторые ценные углеводороды, по.1учаемые при термическом распаде. Из торфа можио получить многочисленные химические продукты, служащие основой для производства пластмасс и каучука и т. д. [c.269]

    Первоначально крэкпнг-процесс был предложен для целей получения легких бензиновых углеводородов из тяжелых фракций нефти. Тогда, конечно, главный интерес представляло рассмотрение лишь термических превращений углеводородов, так как кислородсодержащие соединения (фенолы, кетоны и кислоты) заключаются в природной нефти в ничтожном количестве. В настоящее время крэкинг-проце сс постепенно распространяется и на другие исходные материалы первичный каменноугольный деготь, растительные масла, синтетическую нефть (например синтол Ф. Фишера), а поэтому значительный интерес теперь представляет также и рассмотрение термических превращений сислородсодержащих соединений. [c.259]

    Интересно отметить, что фенолы, правда, крайне незначительном количестве, выделены Тольцманом и Пилатом, а, также Стори и Сноу и из природной нефти. В отличие от каменного угля, здесь мы уже не можем считать источником образования фенолов высокомолекулярные кислородсодержащие соединения гуминового характера. Наиболее вероятным здесь является возникно Еение фенолов за счет непредельных циклических кетонов (см. вьнпе) или дегидрогенизации циклических алкоголей.  [c.262]


Смотреть страницы где упоминается термин Фенол также нефть, фенолы: [c.89]    [c.37]    [c.42]    [c.102]    [c.150]    [c.75]    [c.280]    [c.539]   
Избранные труды (1955) -- [ c.349 , c.487 ]




ПОИСК







© 2025 chem21.info Реклама на сайте