Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрокинетический pH среды

    Понятно, что подвижность влаги в водонасыщенных торфяных системах в первую очередь определяется их структурой, а также электрокинетическими явлениями на границе раздела фаз. Ионогенные функциональные группы торфа, главным образом карбоксильные, диссоциируют в полярной дисперсионной среде (воде) с отщеплением катиона, вследствие чего частицы торфа приобретают отрицательный заряд [221]. Заряд частиц формируется из дискретных элементарных зарядов как вне, так и внутри надмолекулярных ассоциатов торфа [214, 222]. Диффузия полярных молекул внутрь частиц торфа вызывает увеличение диэлектрической проницаемости всего ассоциата, степени диссоциации функциональных групп [223]. В свою очередь, рост плотности заряда структурных единиц торфа интенсифицирует связь воды с торфом по механизму ион-дипольного взаимодействия между ионизованными функциональными группами торфа и молекулами воды. В результате содержание связанной воды в материале увеличивается. Особенно четко это проявляется при повышении pH торфяных систем (см. табл. 4.1) [224]. [c.69]


    Поверхностное натяжение растворов как функцию их состава измеряли методом максимального давления пузырька по известной методике. Электропроводность дисперсионной среды определяли, используя мост переменного тока погрешность, не превышала 10%. Измерение электрокинетического потенциала для границ жидкость—газ и стекло—жидкость выполняли методом микроэлектрофореза в плоскопараллельной кювете. Предварительно исследуемое стекло измельчали в шаровой мельнице с металлическими шарами в течение нескольких часов. Образующуюся дисперсную систему многократно отмывали на фильтре [c.201]

    Одним из малоизученных электрокинетических явлений в дисперсных системах нефтяных твердых углеводородов является их поведение в неоднородном электрическом поле. Эта область представляет наибольший интерес, так как действие сильного неоднородного электрического поля вызывает направленное движение частиц, которое можно использовать для разделения нефтяных дисперсий. С целью выделения наиболее высокоплавких углеводородов из петролатума первой ступени деасфальтизации смеси тюменских нефтей [116] была приготовлена суспензия петролатум— н-гептан (1 10 по массе). После нагрева до полного растворения систему охлаждали до 22 °С. Выбор этой температуры определяется возможностью выделить из петролатума углеводороды с наибольшей температурой плавления, так как в этом случае высокоплавкие углеводороды являются дисперсной фазой, а раствор низкоплавких углеводородов в гептане — дисперсионной средой. В данной среде частицы дисперсной фазы обладают отрицательным зарядом, который определяли методом электрофореза. [c.188]

    Очистка масел в электрическом поле является одним из сравнительно новых способов и недостаточно широко применяется на практике. В то же время электрокинетические свойства нефтяных масел, являющихся диэлектриками, определяют возможность и целесообразность их очистки с применением электрического поля. Практический опыт подтверждает, что такая очистка нефтяных масел от твердых загрязнений и воды в некоторых случаях довольно эффективна, однако отсутствие единой теории электрокинетических явлений в жидкой диэлектрической среде тормозит развитие этого перспективного метода очистки. [c.167]

    Электрообработка позволяет выделить взвешенную часть (дисперсную фазу) из дисперсионной среды независимо от ее физико-химических и электрокинетических свойств. Выделенная таким образом дисперсная фаза в ряде производств может быть переработана в строительные материалы с высокими механическими характеристиками, нефтепродукты, красители, катализаторы и т. п. Об эффективности этих методов говорит тот факт, что эффект очистки по взвешенным частицам достигает 99,99 %, и одновременно происходит уменьшение содержания растворенных веществ. Наблюдается также эффект обеззараживания дисперсионной среды [c.4]


    Из коллоидной химии известно, что любая дисперсная система обладает агрегативной и кинетической устойчивостью, которые, в свою очередь, зависят от наличия факторов стабилизации и дестабилизации дисперсной системы. Наличие и действие указанных факторов определяется физикохимическими и электрокинетическими свойствами компонентов, входящих в дисперсную систему. Таким образом, целесообразно предварительно рассмотреть современное состояние и основные положения теории устойчивости коллоидных систем с жидкой дисперсионной средой во внешних электрических полях. [c.6]

    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]

    Цель работы определение электрокинетического потенциала дисперсных систем электрофоретическим методом исследование влияния состава дисперсионной среды на -потенциал. [c.93]

    Рассчитайте объем раствора, перенесенный через мембрану нз корунда за I ч в результате электроосмоса слабого раствора электролита под действием э. д. с. 100 В. Электрокинетический потенциал поверхности корунда 0,08 В, относительная диэлектрическая проницаемость среды 80,1, вязкость 1-10 Па-с, электрическое сопротивление мембраны с этим раствором R =3900 Ом. [c.109]

    Частицы аэросила 8102 в водной среде при pH = 6,2 имеют электрокинетический потенциал, равный —34,7-10 В. На какое расстояние и к какому электроду сместятся частицы за 30 мин, если напряжение в приборе для электрофореза 110 В, расстояние между электродами 25 см, относительная диэлектрическая проницаемость среды [c.110]

    Определите электрокинетический потенциал на границе раздела фаз керамический фильтр — водный раствор КС1, ссли прн протекании раствора под давлением 2-10 Па потенциал течения равен 6,5-Ю В. Удельная электропроводность среды 1,3-10 См-м , вязкость Ю- Е а-с, относительная диэлектрическая проницаемость 80,1. [c.110]

    Электрокинетическими называются явления, когда под влиянием электрического поля происходит перемещение дисперсной фазы или дисперсионной среды либо когда, наоборот, при перемещении одной фазы относительно другой возникает электродвижущая сила. Известны четыре основных типа электрокинетических явлений. [c.133]

    Несмотря на эти трудности, исследования электрокинетических явлений представляют большой самостоятельный интерес, например для явлений переноса в пористых средах, имеющих чрезвычайно важное практическое значение. Некоторое представление об этой обширной области читатель может получить из сборника [5 ]. [c.154]

    Проводя исследование грубодисперсных материалов, целесообразно выполнять комплекс работ (14, 15, 18, 19 или 15 и 19), что позволит получить более точные данные об электрокинетических свойствах изучаемых веществ. В работах 14, 15, 18 для приготовления диафрагм рекомендуется использовать каолин, глину, мрамор, стекло и др. Целесообразно проводить измерения в дисперсионных средах, содержащих различное количество электролита (КС1, А1(ЫОз)з и др.), что позволит получить зависимость от концентрации электролита. [c.112]

    Здесь е—диэлектрическая проницаемость е = = 8,85-10" Ф/м —электрокинетический потенциал О— разность потенциалов т]—вязкость дисперсионной среды /—длина покрытой части электрода —концентрация суспензии с —концентрация суспензии в приэлектродной зоне. Г1 и г,—радиусы цилиндрических электродов. [c.77]

    Значительный интерес представляют электрические явления, наблюдаемые при движении частиц дисперсной фазы в золях (или при движении дисперсионной среды относительно неподвижных коллоидно-пористых материалов). Эти явления впервые были описаны Рейссом (опыт 79) и получили название электрокинетических явлений. К ним относятся электрофорез (опыт 80—82) и электроосмос (опыт 83, 84), а также обратные им явления — потенциал седиментации и потенциал протекания. [c.174]

    В 1808 г. профессор Московского университета Ф, Ф. Рейсс впервые установил факт движения частичек дисперсной фазы и дисперсионной среды под влиянием внешнего электрического поля. Эти работы легли в основу изучения электрокинетических свойств коллоидно-дисперсных систем. [c.279]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]


    Адсорбция почвенными коллоидами анионов носит несколько иной характер. Как показали исследования, поглощение анионов зависит от состава почвенных коллоидов, реакции среды, величины электрокинетического потенциала коллоидов, а также от особенностей самих анионов. Ряд анионов (N03-, С1-) почвой не поглощается. В силу этого они свободно передвигаются в почве вместе с почвенной [c.400]

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]

    Среди процессов, в которых электрокинетические явления играют существенную роль, на первом месте по своему теоретическому интересу и практическому применению стоит электродиализ. Как известно, электродиализом называется процесс, в котором соединяются явления диализа и электролиза. [c.166]

    Ионно-электростатическая компонента расклинивающего давления, согласно [42, 45], зависит, главным образом, от потенциалов поверхностей, ограничивающих пленку. Поскольку изученные нами ПАВ являлись неионогенными и при их добавлении ионная сила дисперсионных сред оставалась постоянной, а концентрации ионов в отсутствие Na l при pH = 6- 7 были достаточно низки, в первом приближении можно полагать равенство электрокинетических и штерновских потенциалов. Следовательно, обнаруживаемое в опыте повышение -потенциала при увеличении содержания ПАВ в интервале от 1-10 до 1-10 —1-10 моль/дм (рис. 12.5) обусловлено вытеснением из слоя Штерна сильно гидратированных ионов водорода. По мере заполнения адсорбционного слоя ПАВ, возможно, происходит уменьшение поверхностной концентрации гидроксил-ионов, что вызывает снижение -потенциала при концентрации ПАВ 10 —10 3 моль/дм  [c.210]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    При виеилних воздействиях на ССЕ (напрнмер, механических) возможен разрыв двойного электрического слоя и изменение баланса зарядов в ССЕ в результате изменения геометрических размеров ССЕ. Плоскость скольжения обычно проходит по диффузному слою, и часть его компонентов переходит в дисперсионную среду. В результате возникает разность потенциалов между подвижной (диффузной) и неподвижной (адсорбционной) частью двойного электрического слоя, которую принято называть электрокинетическим (дзета) потенциалом — . Значение -потенциала зависит от отношения hjr ССЕ. При hjr- O - 0, а при /i/r- oo значение -потенцнала увеличивается. Иными словами, значение -потенцнала зависит от внешних возде11-ствий и может ими регулироваться в значительных пределах. [c.159]

    Подставив вместо ф -потенциал, найдем, что при увеличении толидины диффузного слоя X (уменьшении и — величины обратной толщине слоя) -потенциал возрастает при постоянном расстоянии плоскости скольжения от границы раздела фаз. Так как понижение температуры, введение в систему индифферентного электролита (специфически не взаимодействующего с поверхностью) и увеличение заряда его ионов ведут к уменьшению толщины диффузного слоя, то соответственно снижается и электрокинетический потенциал. Отсюда же следует, что этот иотенциал будет снижаться и с уменьп1ением диэлектрической проницаемости среды, напрпмер, при добавлении в водный раствор спиртов, эфиров и других органических веществ. [c.218]

    Частицы гидрозоля диоксида кремния, имеющие положительнь,"i заряд при pH < 2, перемещаются в процессе электр(5фореза к катоду, а при pH > 2 — к аноду. Таким образом, изоэлектрическая точка может быть найдена по экспериментальной зависимости -1лектрофоретиче ской скорости частиц золя от рИ среды. Изоэлектрической точке соответствует то значение pH, при котором электрофоретическая скорость и электрокинетический потенциал равны нулю. [c.100]

    Рассчитайте электрокинетический потенциал на границе водный раствор — пористая стеклянная мембрана по данным электроосмоса сила тока / = 3-10 А. за время 60 с переносится 0,6 i мл раствора, вязкость дисперсионной среды Т] = 10" Па-с, относительная диэлектрическая проницаемость среды е = 80,1. Электрическое сопротивление мембраны с дисперсионной средой R = 4500 Ом, а сопротивление мембраны, заполненной 0,1 М раствором K I, составляет = 52 Ом. Удельная электропроводность 0,1 М раствора КС1 равна xk i = 1,167 См-м .  [c.105]

    Тигнинский разрез разрабатывает Тарбагатайское буроугольное месторождение, расположенное в долине реки Хилок. Изучение глинистых минералов с целью их комплексного применения, а также влияния на них водных сред — важные задачи для физико-химиков. С этих позиций интересны как электрокинетические, реологические, адсорбционные, электрофизические исследования изучаемых объектов, так и разработка технологий для оптимального использования в хозяйственных целях больших объемов вскрышных пород. [c.124]

    Внешнее электрическое поле действует на заряды двойного электрического слоя коллоидная частица и диффузные протнво-ноны перемещаются в сторону электродов с противоиоложными знаками. Смещение дисперсной фазы относительно дисперсионной среды происходит по поверхности скольжения. Направление движения частиц дисперсной фазы определяет их знак заряда. Измерив линейную скорость движения и частиц (или границы раздела золь — дисперсионная среда) в электрическом поле, можно рассчитать потенциал на поверхности скольжения — электрокинетический потенциал по уравнению Смолуховского (VI.1)  [c.96]

    При оседании частиц дисперсной фазы по высоте сосуда возникает разность потенциалов, назва1гная потенциалом седиментации. Причина этого явления, обратного электрофорезу, также ДЭС, деформирующийся при трении оседаюп1Нх частиц о среду. По величине потенциала седиментации также можно рассчитать электрокинетический потенциал. [c.110]

    С современной точки зрения заряд на коллоидных частицах лиозолей, проявляющийся при электрофорезе, обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, находящегося в растворе, либо за счет ионизации поверхностных молекул веществ. Правильность такой точки зрения подтверждают опыты, показавшие, что эле строкине-тические явления не наблюдаются или почти не наблюдаются в жидких средах с очень малой диэлектрической проницаемостью, в которых не происходит заметной диссоциации электролитов. К таким жидкостям относятся хлороформ, петролейный эфир, сероуглерод. В то же время электрокинетические явления наблюдаются в нитробензоле в таких слабо полярных жидкостях, как ацетон, этиловый и метиловый спирты, и в особенности — в воде. [c.171]

    Влияние природы дисперсионной среды. Как отмечалось в начале этой главы, электрокинетические явления, а следовательно, и наличие двойного электрического слоя на межфазной границе характерны для систем с дэдд ньши дисперсионными средами. Большое число проведенных исследований показало, что -потен-циал дисперсной фазы тем больше, чем больше полярность растворителя. В табл. УИ, 1 приведены результаты определения ско- [c.196]

    На рис. XII, 7 представлено изменение электрокинетического потенциала глобул диализованного синтетического латекса, содержащего 2% сухого остатка, в зависимости от pH среды при ионной силе, равной 0,01. Электрокинетический потенциал при повышении активной кислотности системы в некотором диапазоне pH не изменяется, затем начинает уменьшаться, очевидно, в результате перехода мыла с поверхности глобул в слабо ионизированную кислоту, достигает нуля при pH = 3,9 и, наконец, принимает положительное значение в сильно кислых средах, вероятно, за счет адсорбции ионов водорода. Существенно, что положительный потенциал глобул в кислой среде по абсолютному значению намного меньше, чем в щелочной, что, безусловно, связано с различной прирот дой и концентрацией ионов, стабилизующих частицы в кислой и щелочной средах. [c.383]

    В СССР первые работы по исследованию свойств латексов, стабилизованных неионогенными поверхностно-активными веществами, выполнены Р. М. Панич и С. С. Воюцким с сотрудниками еще в 1961 г. В этих исследованиях ими было установлено, что латексы, полученные с применением неионогенных поверхностно-активных веществ, представляющих собой продукты сополимеризации MOHO- и диалкилфенолов с достаточными количествами окиси этилена, вполне устойчивы к действию электролитов, что имеет немаловажное практическое значение. Латексы с более гидрофильными стабилизаторами, имеющими длинную оксиэтиленовую цепь, оказались устойчивыми к интенсивному перемешиванию, тогда как в латексе с более гидрофобным стабилизатором при перемешивании образуется коагулят. Разбавленные латексы с неионогенными эмульгаторами обладают небольшим отрицательном электрокинетическим потенциалом. Причина этого явления, по мнению авторов, заключается в адсорбции латексными глобулами посторонних ионов, присутствующих в системе. Абсолютное значение отрицательного электрокинетического потенциала латексных глобул с неионогенными стабилизаторами возрастает с увеличением pH среды. Это указывает на то, что адсорбирующимися ионами, обусловливающими заряд, могут являться гидроксильные ионы. [c.385]

    Электрические свойства растворов полиэлектролитов. Электрокинетический потенциал, как известно, с большей или меньшей точностью может быть подсчитан по уравнениям Гельмгольца — Смолуховского или Генри только для коллоидных частиц, размер которых значительно превосходит толщину двойного электрического слоя. Для частиц же, диаметр которых мал по сравнению с толщиной двойного электрического слоя, при расчете электрокинетического потенциала следует вводить ряд поправок и в первую очередь поправку на электрическую релаксацию. Кроме того, если макромолекулы находятся в растворе в виде рыхлого клубка, то должно быть принято во внимание движение среды через петли свернутой цепи. К сожалению, до сих пор теория электрофореза для свернутых в клубок макромолекул отсутствует. Поэтому в настоящее время распространено определение электрофоретической подвижности не отдельных макромолекул, а макромолекул, адсорбированных на достаточно крупных частицах кварца или угля или на капельках масла. В этом случае электрокинетический потенциал легко определить с помощью микроэлектрофоретических методов. Как показали многочисленные исследования, при достаточной толщине слоя полимера, покрывающего частицу, подобный прием дает вполне воспроизводимые результаты. [c.477]

    Среди электрокинетических свойств капиллярных систем — мембран. и диафрагм существенную роль играет изменение чисел переноса ионов в порах мембраны по сравнению со свободным раствором. Рассмотрим сущность данного явления. Представим себе капилляр в продольном разрезе, наполненный раствором электролита с двойным электрическим слоем ионов на внутренней поверхности, при отрицательном заряде стенки (рис. 86). В объеме АБВГ, где ионы сохраняют подвижность при наложении электрического поля, концентрация катионов больше, чем [c.205]

    Остановимся немного на рассмотрении явления потенциала седиментации, так как данных по исследованию этого электрокинетического эффекта пока еще очень мало. Частицы твердого тела, несущие заряд на своей поверхности и осаждающиеся в жидкой среде, при своем движении оставляют за собой диффузную часть двойного слоя, которая, следовательно, смещается по отношению к движущейся частице с плотным, пристенным слоем. Если поместить два обратимых одинаковых электрода (например, Ад/АдС1) на различной высоте в сосуде с осаждающейся суспензией, то возникает между ними разность потенциалов сед, как это было впервые показано Дорном в 1878 г. [c.139]


Смотреть страницы где упоминается термин Электрокинетический pH среды: [c.205]    [c.188]    [c.51]    [c.30]    [c.38]    [c.56]    [c.217]    [c.106]    [c.164]    [c.105]    [c.40]    [c.382]    [c.170]   
Курс коллоидной химии (1976) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Электрокинетические явления в пористых средах

Электрокинетический природы дисперсионной среды



© 2024 chem21.info Реклама на сайте