Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии анаэробы

    В предыдущем разделе было упомянуто, что пурпурные фотосинтезирующие бактерии могут восстанавливать НАД+ посредством НгЗ за счет энергии света, которая предварительно превращена в А лН циклической редокс-цепью. Зелеными фотосинтезирующими бактериями-анаэробами используется другой механизм. Он устроен таким образом, что свет одновременно вызывает генерацию АцН и восстановление НАД+ сероводородом. [c.62]


    В то же время нельзя не учитывать роль Н+-АТФазы, откачивающей ионы Н+ из клетки, в борьбе с закислением цитоплазмы, тенденция к которому всегда существует в бактериях-анаэробах, сбраживающих нейтральные сахара до кислых конечных продуктов. Последняя функция присуща также и Н+-АТФазе плазмалеммы растений и грибов, которая активируется при падении цитоплазматического pH ниже 7,0. По-видимому, при кислых pH не генерация Д(яН для совершения осмотической работы, а откачка протонов становится ведущей функцией этой Н- -АТФазы. [c.128]

    Некоторые микроорганизмы могут жить как в присутствии свободного кислорода воздуха, так и в отсутствие его. Они относятся к факультативным, или условным, анаэробам. Примером факультативных анаэробов являются молочнокислые бактерии, дрожжи и др. [c.261]

    В природе существуют микроорганизмы, вызывающие процесс денитрификации, т. е. восстановление азотнокислых солей до газообразного азота. Эти бактерии относятся к группе факультативных анаэробов. Процесс денитрификации протекает при наличии в среде безазотистых веществ углеводов, клетчатки, солей летучих жирных кислот и др. Такие вещества окисляются освободившимся из нитратов кислородом. Очевидно, в этом заключается энергетический смысл процесса. Схематически процесс денитрификации можно записать уравнением [c.265]

    Маслянокислые бактерии — строгие анаэробы, имеющие подвижные крупные спорообразующие палочки длиной до 10 мкм. Споры их цилиндрической илп эллипсоидальной формы. Наряду с масляной кислотой они могут образовывать (в меньших количествах) уксусную, молочную, капроновую, каприловую и друг е кислоты, а также этиловый и бутиловый спирты. Возбудители этого брожения развиваются главным образом в трубопроводах, насосах и других скрытых местах. Оптимальная температура для роста бактерий 30—40°С, при pH ниже 4,9 они ие развиваются. [c.210]

    На следующей стадии эволюции появились, видимо, организмы, родственные современным фотосинтезирующим бактериям (пурпурным и зеленым) они могли использовать энергию солнечного света. Любопытно, что большинство этих (грамотрицательных) фотосинтезирующих бактерий—строгие анаэробы. В отличие от высших растений ни один из указанных микроорганизмов не выделяет кислорода. Напротив, для. восстановления двуокиси углерода в процессе фотосинтеза им необхо ДИМ водород, который они получают либо путем расщепления неорганических соединений типа H2S, тиосульфата или Нг, либо из органичен ских веществ. [c.25]


    Образование молекулярного кислорода из воды в процессе фотосинтеза явилось, несомненно, важнейшим событием в эволюции и имело далеко идущие последствия. По мере накопления кислорода в атмосфере Земли облигатные анаэробы (для которых кислород токсичен) оста-.лись только в строго анаэробных средах, уступив место новым классам -бактерий, обладающих механизмами детоксикации кислорода и использования его для окисления сложных органических соединений с целью получения необходимой энергии. [c.26]

    Огромные различия между клетками про- и эукариот породили множество предположений относительно характера эволюционных взаимоотношений между этими двумя основными категориями живых существ. Согласно одной из популярных теорий, митохондрии ведут свое происхождение от аэробных бактерий. Предполагается, что после появления сине-зеленых водорослей и накопления в атмосфере достаточного количества кислорода возник симбиоз между мелкими аэробными и более крупными облигатно анаэробными бактериями. При этом аэробные бактерии, поселившись внутри клеток анаэробов, поглощали весь кислород и защищали тем самым организм хозяина, для которых кислород [c.37]

    Факультативные анаэробы — бактерии, которые могут нормально расти и размножаться при малом количестве свободного кислорода, а также черпать его из легко окисляющихся соединений. [c.189]

    Бактерии группы СоН относятся к семейству энтеробактерий. Это неспороносные палочки, факультативные анаэробы, сбраживающие лактозу и глюкозу при температуре 37 С с образованием кислоты и газа и не обладающие оксидазной активностью. Они являются постоянными обитателями кишечника человека и животных постоянно и в большом числе выделяются во внешнюю среду дольше, чем патогенные микроорганизмы, сохраняют жизнеспособность в этой среде бо- [c.36]

    Значительное число бактерий — облигатных аэробов и факультативных анаэробов — способно существовать за счет использования загрязнений (примесей) воды в качестве источника питания. При этом часть использованных органических веществ расходуется на энергетические нужды, а другая часть — на синтез тела клетки. Часть вещества, расходуемая на энергетические потребности, окисляется клеткой до конца, т. е. до СО2, Н2О, КНз. Продукты окисления — метаболита — выводятся из клетки во внешнюю среду. Реакции синтеза клеточного вещества идут также с участием кислорода. Количество кислорода, требуемого микроорганизмам на весь цикл реакции синтеза и получения энергии, и есть БПК. [c.56]

    Многие из анаэробных бактерий являются строгими анаэробами , т. е. вообще не переносят присутствия кислорода, как, например метаногенные бактерии . [c.145]

    Характерной особенностью распределения микроорганизмов в осадках является резкое уменьшение их общего количества на глубине в несколько дециметров, особенно контрастное в современных отложениях Мирового океана. Такое резкое сокращение плотности популяций микроорганизмов в осадках обусловлено рядом факторов истощением части ОВ, доступного для питания, накоплением вредных для жизнедеятельности бактерий веществ, физико-химическими изменениями в осадке. Для всех типов осадков морей и озер наблюдается резкое преобладание аэробов, их количество превышает численность анаэробов на один-два порядка (табл. 3.11). [c.129]

    О2 (последний не участвует в осуществляемых ими метаболических реакциях), но способные расти в его присутствии, являются по типу осуществляемого ими метаболизма облигатными анаэробами, устойчивыми к О2 внешней среды. Примером таких организмов служат молочнокислые бактерии. Многие прокариоты, относящиеся к этой же группе, приспособились в зависимости от наличия или отсутствия О2 в среде переключаться с одного метаболического пути на другой, например с дыхания на брожение, и наоборот. Такие организмы получили название факультативных анаэробов, или факультативных аэробов. Представителями этой физиологической группы прокариот являются энтеробактерии. В аэробных условиях они получают энергию в процессе дыхания. В анаэробных условиях источником энергии для них служат процессы брожения или анаэробного дыхания. [c.129]

    В отношении к молекулярному кислороду среди фототрофных эубактерий на одном полюсе располагаются строгие анаэробы, на другом — организмы, у которых О2 образуется внутриклеточно. Многие виды — факультативные анаэробы, есть аэротолерантные формы и микроаэрофилы. У фотосинтезирующих эубактерий молекулярный кислород часто выступает как могучий фактор, регулирующий их метаболизм в аэробных условиях у пурпурных и зеленых бактерий репрессируется синтез фотосинтетических пигментов и тем самым уничтожается основа для фототрофного способа существования. [c.324]


    Большинство видов бактерий, подобно грибам и животным, по типу питания относится к хемогетеротрофам, т. е. используют энергию, выделяющуюся при распаде органических веществ. Некоторые гетеротрофные бактерии — анаэробы. Это означает, что они разлагают сложные органические соединения (например, сахара) при полном отсутствии кислорода. Указанный процесс называется брожением. Некоторые анаэробы окисляют органические соединения, используя неорганические окислители, в частности нитрат (денитрифицирующие бактерии) или сульфат (сульфатредуцирующие бактерии). Для ряда анаэробных бактерий, относящихся главным образом к роду lostridium, кислород токсичен, их называют облигатными анаэробами. Другие, в том числе Е. ali, относятся к категории факультативных анаэробов это означает, что они способны расти как в присутствии, так и в отсутствие кислорода. Облигатные аэробы используют в качестве источника энергии процессы окисления органических соединений кислородом воздуха. [c.23]

    Полный ВЗ Колиформы термоустойчивые, фекальные стрептококки, бактериальные аэробы, споры бактерий анаэробов 9 [c.9]

    Как видно из таблицы, в сброженной твердой фазе суммарное количество микробов возрастает почти вдвое за счет бактерий анаэробов. Число же бактерий метатрофов в осадке снижается в 20 раз, а в брикетах — в 3800 раз по сравнению со сточной жидкостью. [c.151]

    Тот же самый С. Н, Виноградский в 1893 г, разъяснил существование в почвах особых бактерий (анаэробы) lostridium Paslerianum, которые образуют из азота атмосферы аммиак. [c.217]

    Ответ, видимо, заключается в рассмотрении пути развития жизни на Земле. Предполагается, что на ранней стадии существования Земли она имела восстановительную атмосферу, состоявшую из таких газов, как Hj, СН4, NH3, Н2О и HjS, но содержавшую очень мало свободного О2 или вообще не имевшего его. В этих восстановительных условиях органические молекулы, которые образовывались небиологическими способами, не могли разрушаться в результате окисления, как это происходит в наше время, а продолжали накапливаться в течение тысячелетий. Первые формы живых организмов, по-видимому, питались тем, что они могли извлечь из этого химического супа в океанах, и получали энергию путем разложения встречающихся в естественных условиях соединений с большим запасом свободной энергии. Скорее всего, lostridia и родственные ей бактерии сегодня являются живыми ископаемыми, потомками тех древних способных к ферментации анаэробов, которые отступили в редкие анаэробные области мира, когда атмосфера в целом накопила большие количества свободного Oj и приобрела окислительный характер. [c.334]

    После работ Омелянского проводились систематические исследования механизма образования метана из органических и неорганических веществ. Сложность изучения метанообразующих микроорганизмов связана с тем, что оии являются строгими анаэробами, поэтому их чрезвычайно трудно изолировать. Кроме того, метановые бактерии очень медленно развиваются в культурах. Ряд исследователей связывают медленное развитие метановых бактерий в питательной среде с ее окислительно-восстановительными условиями. Установлена прямая зависимость механизма преобразования органического вещества от гНз среды. Так, при значении Ж2=12—12,9 разложение кальциевой соли муравьиной кислоты протекает с образованием водорода по следующей схеме (НС00)2Са-1-Н20->СаС0з + С02 + 2Н2. А при введении в систему газообразного водорода и значения гНг = 6—7 муравьиная кислота минерализуется с образованием метана по уравнению НСООН-Ь + ЗН2 >СН4 - - 2Н2О. [c.314]

    Дыхание микроорганизмов — совокупность биохимических окислительно-восстановительных процессов, необходимых для обеспечения энергетических потребностей в условиях их жизнедеятельности. Л. Пастер впервые установил способность некоторых микроорганизмов существовать без использования кислорода воздуха. По этому признаку все микроорганизмы делят на две группы аэробы и анаэробы. Аэробы нуждаются в кислороде для биохимических процесов внутри клеток (многие бактерии и микрогрибы). Анаэробы способны к дыханию без использования свободного кислорода. [c.16]

    Анаэробы - организмы, списибньк жить в бескислородной среде. К числу анаэробов относятся многие виды бактерий (в том числе мета-ногены). [c.290]

    Считается, что некогда атмосфера Земли была полностью анаэроб - ной она содержала метан, формальдегид и более сложные органические соединения. В таких условиях первые живые организмы должны были напоминать современные бактерии типа lostridium [8]. [c.25]

    Каталаза, согласно существующим представлениям, выполняет защитные функции, препятствуя накоплению Н2О2, оказывающей повреждающее действие на клеточные компоненты. Гибельное действие О2 на облигатные анаэробы, возможно, объясняется отсутствием у них этого фермента. В пользу такого представления говорит существование наследственной болезни акаталаземии [25]. Люди с очень низкой активностью каталазы встречаются во многих местах, но особенно их миого в Корее. По имеющимся оценкам, в Японии насчитывается 1800 человек, лишенных каталазы. Поскольку примерно у половины этих людей не наблюдается никаких симптомов, каталазу можно было бы отнести к несущественным ферментам. Однако у многих лиц вокруг зубов развиваются язвенные процессы, которые могут приводить к серьезным осложнениям. По-видимому, перекись водорода, вырабатываемая бактериями, по мере накопления окисляет гемоглобин в метгемоглобин (дополнение 10-А), лишая пораженные ткани кислорода. [c.377]

    Следует остановиться на вспухании ила, т. е. плохом оседании его. Это явление возникает вследствие развития характерной микрофлоры бактерЕ]й со слизистой капаулой—лейконосток, фак ультативных анаэробов  [c.189]

    Восстановление сульфатов. Разложение органических серосодержащих соединений (белки, аминокислоты) сопровождается выделением сероводорода. Источником образования сероводорода является также восстановление сернокислых и серноватистокислых солей. Большое количество сероводорода образуют сульфатре-дуцирующие бактерии в процессе сульфатного дыхания. Эти бактерии в отличие от денитрифицирующих бактерий являются облигатными анаэробами, а в качестве доноров водорода они используют главным образом органические кислоты, спирты и молекулярный водород. Органические субстраты окисляются ими не до конца. Чаще всего конечным продуктом окисления является уксусная кислота. Акцептором водорода у сульфатреду-цирующих бактерий являются сульфаты  [c.132]

    Разнообразие прокариот, которые удается культивировать при высоких или относительно высоких температурах, достаточно велико. Способность расти при температурах от 50 до 70 °С, свойственная представителям термотолерантных, факультативных и облигатных термофилов, не связана с осуществлением ими какого-либо одного специфического типа метаболизма. Среди термофилов, относящихся к этим подфуппам, найдены фотосинтезирующие, хемолитотрофные и хемогетеротрофные бактерии. Есть среди них облигатные аэробы и анаэробы. Термофилы, верхний предел роста которых офаничен 70 °С, в целом структурно напоминают своих мезофильных аналогов и по типам осуществляемого ими конструктивного и энергетического метаболизма относятся к тем же группам, что и мезофильные виды. По мере повышения температуры число видов, способных к росту, быстро уменьшается. Тем- [c.134]

    Группа 7. Бактерии, характеризующиеся диссимиляционным восстановлением серы или сульфата. В составе группы эубактерии с разной морфологией и следующими одинаковыми свойствами грамотрицательные строгие анаэробы, использующие в качестве акцептора электронов молекулярную серу или ее окисленные соединения, которые восстанавливаются при этом до HjS. Некоторые виды способны к брожению. Есть среди них азотфиксаторы. [c.168]

    Группа 15. Грамположительные, не образующие спор палочки неправильной формы. Группа разнообразна. Большинство — фампо-ложительные палочки неправильной формы, растущие в присутствии воздуха и не образующие эндоспор, но есть в фуппе бактерии, имеющие форму кокков или палочек правильной формы, окрашивающиеся отрицательно по Граму и являющиеся строгими анаэробами. [c.173]

    Z mobilis — грамотрицательные подвижные бактерии, имеющие форму коротких палочек. Характеризуются высокими биосинтетическими способностями. Анаэробы, единственный способ получения энергии для которых — спиртовое брожение. Однако [c.222]

    Большинство пропионовокислых бактерий — аэротолерантные анаэробы, получающие энергию в процессе брожения, основным продуктом которого является пропионовая кислота. Аэротолерантность их обусловлена наличием полностью сформированной ферментной системы защиты от токсических форм кислорода (супероксидный анион, перекись водорода). У пропионовокислых бактерий обнаружены супероксиддисмутазная, каталазная и пероксидазная активности. Внутри группы отношение к О2 различно. Некоторые виды могут расти в аэробных условиях. [c.230]

    В течение длительного времени зеленые бактерии принимали за зеленые или сине-зеленые водоросли (цианобактерии). Начало их изучения как бактерий связано с именами С. Н. Виноградского и К. ван Ниля. Эта небольшая группа эубактерий, осушествляющих фотосинтез бескислородного типа, разделена на две подгруппы. Зеленые серобактерии — строгие анаэробы и облигатные фототрофы, способные расти на среде с Н28 или молекулярной серой в качестве единственного донора электронов при окислении сульфида до молекулярной серы последняя всегда откладывается вне клетки. [c.302]

    Физиолого-биохимическая характеристика зеленых нитчатых бактерий основана главным образом на данных, полученных для разных штаммов hloroflexus aurantia us, обнаруживших значительное метаболическое разнообразие. С. aurantia us может быть охарактеризован как факультативный анаэроб и фототроф. На свету он растет в аэробных и анаэробных условиях в присутствии разнообразных органических соединений сахаров, спиртов, органических кислот и аминокислот. Некоторые штаммы этого вида способны к анаэробному фотоавтотрофному росту, используя Н2 или H2S в качестве донора электронов. Окисление H2S приводит к образованию молекулярной серы и отложению ее в среде в виде аморфной массы. Молекулярная сера в очень незначительной степени затем окисляется до сульфата. Хемогетеротрофный рост также возможен в аэробных и для отдельных штаммов в анаэробных условиях. [c.304]

    Супероксиддисмутаза обнаружена у хемотрофных прокариот, использующих О2 (облигатно и факультативно аэробных форм), а также у изученных представителей из групп фотосинтезирующих прокариот. Среди анаэробов фермент найден у подавляющего большинства аэротолерантных форм. Исключение составляют некоторые молочнокислые бактерии, однако в клетках большинства из них содержатся высокие концентрации (до 30 мМ) ионов двухвалентного марганца. Оказалось, что для которого показана способность окисляться под действием 0, в таких концентрациях способен так же эффективно убирать образующиеся супероксидные ионы, как это делает супероксиддисмутаза, содержание которой в клетке обычно поддерживается на микромолярном уровне. Таким образом, у этих молочнокислых бактерий функцию нейтрализации О выполняют ионы Мп " . [c.335]

    Среди облигатных анаэробов супероксиддисмутаза обнаружена у многих представителей рода lostridium. Изучение их устойчивости к О2 обнаруживает четкую связь с содержанием в клетках этого фермента. Виды, имеющие супероксиддисмутазу, характеризуются умеренной или даже высокой устойчивостью к О2 по сравнению с видами, у которых этот фермент отсутствует. Супер-оксидцисмутаза найдена у разных видов строго анаэробных бактерий. Число организмов с не выявленной до сих пор супероксид-дисмутазой очень мало. [c.335]


Смотреть страницы где упоминается термин Бактерии анаэробы: [c.274]    [c.27]    [c.70]    [c.210]    [c.85]    [c.120]    [c.217]    [c.242]    [c.35]    [c.132]    [c.70]    [c.128]    [c.135]    [c.217]    [c.259]   
Экологическая биотехнология (1990) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте