Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Запрещенные переходы теория

    Эти формулы, как и вся теория Слейтера, основаны на представлении о молекуле, как совокупности простых гармонических осцилляторов, а также на условии (7.44) активированного состояния молекулы. Как выясняется, и для молекулы с энергией, большей во, но распределенной не так, чтобы удовлетворять условию (7.44), если она представлена самой себе на длительное времй, имеется некоторый шанс прореагировать. Конечно, реакция может осуществиться, если запрет перехода энергии от одного вида колебания к другому не так абсолютен, как этого требует строго гармоническая модель. Ведь на самом деле колебания в молекуле не являются строго гармоническими, так что некоторая миграция энергии будет иметь место. Однако еще не найден метод расчета возможной скорости такого рода миграции. Все же имеется возможность очень приближенной оценки влияния, так сказать, полностью свободной миграции на скорость, предсказываемую для низкого давления. Впрочем, следует отметить, что рассчитываемая таким образом скорость совпадает с полученной из теории Касселя. Согласно последней, как уже известно, реагируют все молекулы, обладающие избытком энергии над о и представленные самим себе на достаточно долгое время. В качестве примера оценки упомянутого влияния для молекулы, в которой все ц одинаковы, а Ь =во/кТ = 40, Слейтер дает следующие значения к/ш =Л е  [c.182]


    Вычисление матричных элементов в формуле (VII, 6), если АО являются функциями Слетера, не составляет большого труда. Заметим, что на Т—S-переходы так же, как и на S —S-переходы, может быть наложен запрет по симметрии, который легко определяется с помощью теории групп. На этих вопросах мы останавливаться не будем. [c.141]

    Значительно менее интенсивны полосы, связанные с внутриатомными d-d- или f-f-переходами. Эти, вообще говоря, запрещенные переходы (AL = 0) дают полосы с молярным коэффициентом поглощения от 1 до величин, редко превышающих 100. Снятие запрета с d-d-переходов в комплексах чаще всего объясняют частичным смещиванием d- и р-орбиталей и переходом электрона уже со смешанных d-, р-орбиталей на d-орбитали, что не запрещено. Успешно интерпретирует спектры d- и /-элементов теория кристаллического поля. [c.62]

    Для вращательного квантового числа / действует правило отбора А/ = 1. Однако в спектре двухатомной молекулы, состоящей из одинаковых ядер, спины которых равны нулю, количество линий в ротационной структуре вдвое меньше, чем это должно быть по элементарной теории линии выпадают через одну. Это связано с существованием правила запрета, согласно которому не наблюдаются переходы между симметричными и антисимметричными состояниями молекулы Р ]. Если спины ядер отличны от нуля, то вместо исчезновения линии наблюдается изменение их интенсивностей. Отношение интенсивностей соседних [c.589]

    Оказалось иначе. Более совершенная техника эксперимента позволила обнаружить в спектрах атомов и, в частности, в атомном спектре водорода так называемую тонкую структуру. Стало ясно, что ряд линий в атомных спектрах является фактически совокупностью двух или нескольких более тонких линий. Для объяснения тонкой структуры спектров Н. Бор, немецкий ученый А. Зоммерфельд и другие ввели в первоначальный вариант теории Бора ряд дополнений и изменений. Так, большинству дозволенных электронных орбит была приписана эллиптическая форма и для определения их положения в пространстве было введено дополнительно еще два квантовых числа. При этом, однако, теоретическое число возможных переходов электронов оказалось большим, чем фактическое число линий в спектрах. Тогда были введены так называемые правила запрета , т. е. правила, которые в соответствии с экспериментальными данными указывали на невозможность тех или иных переходов электронов. [c.14]

    Невозможность существования природных тел совершенной чистоты — даже в такой условной ее степени, какая доступна была технике очистки в начале текущего века,— факт того же порядка, что и невозможность создания двигателя, работающего за счет охлаждения внешней среды. Случись такое, оно означало бы количественный переход от более вероятного состояния к менее вероятному, на что и теория (второе начало термодинамики) и практика налагают запрет. [c.7]


    Если молекула обладает симметрией более сложной, чем центральная (см. Приложение И), то также имеются правила, разрешающие или запрещающие переходы между волновыми функциями, принадлежащими к различным (с точки зрения теории групп) классам. Запреты симметрии в многоатомных молекулах обычно приводят к уменьшению соответственного коэффициента поглощения только в 10—100 раз. [c.105]

    Еще, может быть, интереснее то, что за последние годы открыт z-эф-фект, т. е. каталитическое влияние магнитных внутриатомных векторов на скорости химических элементарных актов в частности,магнитные вектора оказываются способными снимать запреты взаимных переходов между синглетными и триплетными состояниями молекул, что важно для теории катализа и особенно для биохимии. Упомянем и о парамагнитных каталитических эффектах, например о влиянии 0 на скорости процессов. [c.51]

    В гипотезу о свободноионной природе гидридного перехода при низкотемпературной полимеризации не укладывается и следующее. По данным, полученным для изомеризации карбониевых ионов в газовой фазе [38], превращение первичного иона во вторичный сопровождается выделением 16—25 ккал/моль тепла, превращение первичного в третичный — выделением 36 ккал/моль. Следовательно, эти ионы более стабильны. Превращение же вторичного или третичного иона в первичный должно быть эндотермич-ным и возможно лишь нри большом запасе внутренней энергии. Тем не менее в табл. 3 имеется случай, когда на чисто катионном катализаторе А1С1з при —60° С вторичный ион переходит в первичный. Энергия активации такого перехода должна быть, но крайней мере, 20—25 ккал/моль. Даже если она равна 15 ккал/моль, то при р = 10 ккал/моль и —60° С отношение т /ю = 10 . Таким образом, теория свободного иона не может объяснить наблюдаемого явления. Остальные случаи запрещенных переходов, отмеченные в табл. 3, мы не рассматриваем, так как они происходят при повышенных температурах и на катализаторах Циглера, на которых может идти анионная полимеризация. Поскольку изомеризация радикалов происходит с тепловым эффектом 5 ккал/моль [39], а они являются промежуточными образованиями между катионами и анионами, изомеризация анионов может происходить с инверсией теплового эффекта и снимать тем самым запрет перехода вторичного и третичного ионов в первичный. [c.231]

    Однако несмотря на огромное значение Первого начала для аксиоматки термодинамики, оно одно не объясняло принципиального отличия теплоты от работы, не позволяло предсказывать направление и пределы протекания различных процессов и положение равновесия. Все эти задачи были решены после постулирования Второго начала. Основная идея этого закона была высказана в 1824 г. французским инженером С. Карно. Наблюдая за работой водяной мельницы, он сравнил падение воды с переходом тепла от более нагретого тела к менее нагретому. И вода, и тепло в этих процессах могут совершать работу, зависящую от перепада уровней высот или температур. Карно сформулировал принцип, в дальнейшем получивший его имя для производства работы тепловой машиной необходимы два термостата с различными температурами. Это была исторически первая формулировка Второго начала. Однако Карно, исходивший из теории теплорода, нарушил в своих рассуждениях Первое начало, так как по аналогии с водяной мельницей допустил, что количество теплорода в системе остается неизменным, т. в. получил работу практически из ничего. Другими словами, он получил вечный двигатель первого рода, запретив своим принципом создание вечного двигателя второго рода, получающего работу из одного термостата. Позже стало ясно, что теплота, полученная системой из горячего термостата, равна сумме теплоты, отданной системой холодному термостату и совершенной работы. [c.313]

    Легко видеть, что квантовая механика обеспечивает естественное место для введения этого принципа. В последнем разделе мы нашли две системы функций, соответствующих эквивалентным частицам, так что если одна из них осуществляется в природе, то только они одни и существуют, ибо переходы между состояниями различного типа невозможны. Очевидно, далее, что антисимметричная система состояний удовлетворяет принципу запрета, так как если какие-нибудь две индивидуальные системы в (6.16) тождественны, то определитель обращается в нуль. Ничего подобного не происходит в симметричных состояниях. Следовательно, эмпирический принцип Паули вводится в теорию при помощи требования, что ф Функция, описывающая состояние системы, должна быть антисимметрична во всех электронах. Это требование доказывается и другим путем — например, тем, что оно выполняется в случае свободных частиц, как это следует из электронной теории металлов Ферми, подтвержденной опытами. Поэтому частицы, имеющие антисимметричные собственные функции, считаются подчиненными статистике Ферми. О частицах, имеющих симметричные собственные функции, говорят, что они подчиняются статистике Бозе, — такого сорта частицами являются фотоны. [c.164]


    Основные разногласия в области оптической активности вызывает вопрос о происхождении вращательной силы. При рассмотрении трисхелатов Моффит использовал модель теории кристаллического поля, приняв, что запрет й— -переходов в качестве электрических дипольных переходов снимается за счет примеси 4р-ха-рактера в тригональном поле (с нечетным характером). Однако Сугано [69] на основе рассмотрения симметрии показал, что предлагаемое Моффитом (1 — р-смешение не может привести к появлению оптической активности. Тем не менее многочисленные расчеты [70—72], проведенные для трисхелатных комплексов, основываются на предположении о тригональном возмущении октаэдрических уровней, что за исключением отдельных деталей не отличается от подхода, развитого в работах Моффита. [c.180]

    Другим фактором, способствуюш,им ступенчатой ионизации, является наличие так называемых метастабильных состояний атома. Согласно теории атома не все переходы электрона с более высокого энергетического уровня на более низкий могут происходить путём излучения соответствующего кванта света. Некоторые переходы, как выражаются в теории атома, запрещены . Запреты фиксируются определёнными соотношениями между квантовыми числами энергетических уровнен. Уровни энергии, с которых электрон не может перейти спонтанно (путём излучения света) ни на основной, ни на один из других нижележащих уровней, называются метастабильными уровнями, соответствующее состояние атома — метастабильным состоянием, а сам атом в таком состоянии — метастаб1ыьным атомом. Для того чтобы электрон всё же вернулся с метастабильного уровня иа основной уровень энергии, нужно электрон сначала поднять новым соударением первого рода или поглощением соответствующего светового кванта на другой, более высокий уровень, с которого он может перейти непосредственно на основной уровень с превращением энергии возбуждения атома в энергию излучения. Более детальное рассмотрение вопроса о метастабильных состояниях в квантовой механике показывает, что спонтанный переход с метастабильного уровня на уровень, лежащий ниже, всё же возможен, но только вероятность такого перехода чрезвычайно мала, переходы чрезвычайно редки ). Предоставленный самому себе метастабильный атом остаётся на верхнем энергетическом уровне в течение времени, много большего, чем иужно для того, чтобы в лабораторных условиях газового разряда атом был выведен из этого состояния под действием одной из указанных выше причин или при взаимодействии со стенкой разрядной трубки. Поэтому в обычных условиях запрещённые спектральные линии, соответствующие переходам с метастабильных. состояний, не могут быть обнаружены вследствие их крайне малой интенсивности. Однако не в лабораторном, а в мировом масштабе такие запрещённые линии удаётся обнаружить. Так, в спектрах некоторых туманностей звёздного неба, представляющих собой газы в очень разреженном состоянии, были обнаружены доволшо яркие линии, не наблюдаемые, в зем- [c.210]

    Нарушение правила интеркомбинационного запрета вызывается тем, что электронные состояния молекул в действительности не являются чисто синглетными и три-плетными состояниями. Наличие спип-орбитального взаимодействия (спин-орбитальной связи) приводит к смешению этих состояний, что делает возможными интеркомбинационные переходы. В атомах и молекулах со слабой спин-орбитальной связью последняя учитывается с помощью теории возмущения. Рассматривая спип-орбиталь-ное взаимодействие как малое возмущение, волновые функции триплетных состояний в приближении первого порядка записывают в виде  [c.23]


Смотреть страницы где упоминается термин Запрещенные переходы теория: [c.246]    [c.350]    [c.38]    [c.65]    [c.38]    [c.183]    [c.85]   
Молекулярная фотохимия (1967) -- [ c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Запрещенные переходы



© 2025 chem21.info Реклама на сайте