Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азота взрыв

    Широко применяемые в цехах жидкого хлора аппараты, водной емкости которых совмещены испаритель хладоагента (аммиака) и конденсатор хлора, в процессе эксплуатации подвергаются сильной коррозии (раствором хлористого кальция или поваренной соли).-В последние годы в цехах большой производительности применяют конденсаторы трубчатого типа с использованием в качестве хладоагента фреона. Применять в холодильнике трубчатого типа в качестве хладоагента аммиак опасно, так как хлоро-амми-ачнай смесь при коррозии труб или образовании неплотностей в соединениях может привести к взрыву. Во избежание коррозии в рассол вводят пассивирующие добавки (соли хромовой, фосфорной и других кислот), поддерживают слегка щелочную реакцию рассола (pH = 7,5—8), периодически проверяют отсутствие в рассоле растворенного аммиака, хлора. При возникновении аварийных ситуаций (быстром росте содержания водорода в абгазах или в хлоргазе) предусматривают аварийную подачу сухого азота или воздуха в хлоропровод на вводе в цех сжижения. [c.55]


    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    При изучении влияния защитной газовой среды с различным содержанием кислорода на взрываемость металлических порошков выявлено, что магниевый порошок при воспламенении в чистом азоте взрывается, при этом создается давление 300 кПа (в условиях опыта). В чистом аргоне магний не взрывается, однако при содержании всего 0,5% кислорода он воспламеняется давление взрыва в этом случае составляет 260 кПа [26]. [c.75]

    Случаи взрыва газов в реакторах и скрубберах происходили в результате затухания пламени в реакторе пиролиза, что обусловлено значительным снижением (до 88—89%) концентрации кислорода, поступающего на пиролиз. Чтобы обеспечить стабильную работу реакторов и агрегатов пиролиза, кислород целесообразно подавать от воздухоразделительных установок при этом концентрация кислорода составляет не менее 95%, а содержание в нем азота находится в пределах 1%. Для усреднения состава газа кислород от ВРУ, как правило, подают через газгольдер достаточного объема, а для предупреждения внезапного повышения концентрации азота в кислороде предусматривают газоанализаторы, снабженные сигнализацией, срабатывающей при достижении мини- [c.30]

    Известен случай взрыва водородовоздушной смеси при ведении сварочных работ на установке отмывки конвертированного газа жидким азотом. Взрыв произошел в блоке агрегата доочистки газа методом глубокого охлаждения при проведении электросварочных работ на перегородке, разделяющей холодный и теплый блоки. [c.24]

    Разлагается запах жженой бумаги Разлагается с выделением окислов азота, взрывается Разлагается запах прогорклого масла или сыра [c.522]

    Наряду с производными металлов известны продукты замещения водорода аммиака на галоид, например хлористый азот, образующийся в виде желтых маслянистых капель при действии хлора на концентрированный раствор хлористого аммония. При соприкосновении со многими органическими веществами или при ударе хлористый азот разлагается с сильным взрывом, выделяя большое количество тепла. Еще более чувствительным к взрыву является иодистый азот, он взрывается от звучания высоких тонов скрипки. Иодистый азот взрывается даже под водой. [c.192]


    Разлагается с выделением окислов азота, взрывает [c.99]

    Для соблюдения взрывобезопасности в работе очень важно, чтобы в применяемой азотной кислоте не имелось больших количеств двуокиси азота, так как последняя также увлекается пропускаемым углеводородом, отчего смесь обогащается кислородсодержащими соединениями. Поэтому молярное отношение углеводород азотная кислота изменяется в сторону азотокислородных соединении, что. может привести к взрыву [76]. [c.279]

    За несколько дней до взрыва на установке получения бутадиена была прекращена подача сырья (вследствие возникших неполадок). Сырье, содержащее до 50% бутадиена, подавалось из резервуара насосом, который был запроектирован недостаточной производительности. Чтобы обеспечить нужную подачу сырья, в резервуаре создавали избыточное давление инертным газом, который получали сжиганием избытка топливного газа в кислороде воздуха. В получаемом инертном газе был непрореагировавший кислород и следы оксидов азота, образовавшегося в печи. В определенных условиях бутадиен реагирует с кислородом, образуя взрывоопасные пероксиды бутадиена, а с оксидами азота — бутадиен-азотистые соединения, разлагающиеся при нагревании. [c.32]

    Аварийная ситуация может возникнуть во время пуска серий ванн. Выделяющийся на катоде водород через 10—15 мин после начала работы образует с воздухом в катодном пространстве электролизера и водородном коллекторе взрывоопасную водородовоздушную смесь. Поэтому перед пуском серии ванн необходимо продуть азотом электролизеры и водородный коллектор. Для устранения опасности катодных взрывов необходимо также следить за герметичностью ванн, тщательностью их сборки, проверять надежность и плотность соединений, контактов, не допускать нагрев контактов и искрение, организовать постоянный контроль концентрации водорода в катодном пространстве, между серийным и общим коллектором установить гидрозатворы (огнепреградители). [c.48]

    Однако при высоких давлениях озона эти смеси могут взрываться. Хотя с химической точки зрения эти реакции просты, они трудны для изучения, так как чрезвычайно чувствительны к катализу металлами, окисями металлов и следами примесей, таких, как органические вещества, перекиси или окислы азота. Последние две примеси практически трудно отделить, если кислород, подвергающийся озонированию, содержит следы N2 и Н2О. [c.347]

    При сливе ацетиленсодержащих вод в сосуды или аппаратуру, в которых может десорбироваться растворенный ацетилен, последние заполняют инертным газом, а для предотвращения попадания атмосферного воздуха воздушку снабжают гидрозатвором. Чтобы предотвратить загазованность и взрыв при аварийных ситуациях, в производстве концентрирования ацетилена предусматривают аварийные емкости, находящиеся под небольшим давлением азота, для слива из системы органического растворителя, насыщенного ацетиленом и другими взрывоопасными газами. [c.24]

    В протоколе комиссии указано, что в данном случае персоналом были допущены грубые нарушения правил техники безопасности при обслуживании склада жидкого хлора и системы защиты, монтажа, а также в отношении использования азота с опасными примесями. Персонал склада хлора не проводил анализов азота на содержание примесей до его подачи в резервуары с жидким хлором, а в день взрыва азотная линия не подвергалась продувке. В рабочей инструкции оператора склада жидкого хлора не сделаны соответствующие изменения и дополнения, обеспечивающие безопасную работу при подаче азота. Кроме того, при подаче азота в 1-й резервуар с жидким хлором была открыта задвижка и на 3-м резервуаре. [c.212]

    Известны случаи разложения ацетилена со взрывом в стволе факела и прогара ацетиленопроводов на участках между факелом и огнепреградителем. Отмечены случаи загорания и разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. Для предупреждения подобных аварий на факельных системах предусматривают автоматическую подачу азота в линию сброса газа на факел (после огнепреградителя) при повышении температуры" на этом участке, а также в ствол факела ацетилена при открытии электрозадвижки сброса газа на факел. При этом обеспечивается небольшое избыточное давление инертного газа (50—100 Па) в линии сброса ацетилена на факел до огнепреградителя. [c.31]

    В производстве нитроцеллюлозных эмалей на одном из лакокрасочных заводов произошел взрыв в нитраторе при проведении процесса нитрования. Взрыв вызван подачей в реактор этилаце-тата, камфарного масла при включении мешалки. Причина аварии— заполнение реактора взрывоопасными продуктами в отсутствие азота. В производстве промежуточных продуктов в анилинокрасочной промышленности отмечены аварии при нитровании, вызванные превыщением температуры реакционной массы и попаданием в реакционную массу воды. [c.118]


    Отмечены случаи взрывов в бочках, из которых хлор эвакуировали испарением в испарителях, в которых при длительной непрерывной работе происходило концентрирование треххлористого азота в трубопроводе и ресиверах. [c.56]

    Вследствие неполадок в системе ректификации агрегат перевели с режима контактирования на режим розжига. Во избежание конденсации аммиака в подводящем газопроводе часть аммиака сбросили через неработающий агрегат синтеза и одновременно подали азот. Таким образом, нитрозные газы и аммиачно-азотная смесь поступали через эжектор в коллектор нитрозных газов. Взаимодействие указанных газов привело к образованию самопроизвольно разлагающихся нитрита и нитрата аммония, а это вызвало взрыв. [c.78]

    Взрыв паров сероуглерода в ксантогенаторах может возникнуть при неплотности запорной арматуры на линиях вакуумиро-вания аппаратов. Для устранения потенциальной возможности взрыва процесс ксантогенирования на всех его стадиях необходимо проводить в среде инертного газа (азота). [c.100]

    После стадии нитрования при охлаждении и конденсации может образоваться парогазовая реакционная смесь, содержащая непрореагировавшие окислы азота взрывоопасной концентрации. При нарушении технологического режима и отступлении от действующих правил и.норм неоднократно возникали аварийные ситуации, которые приводили к взрывам, пожарам, травмированию работающих. [c.118]

    Во избежание превыщения температуры сушки выше предельно допустимой и взрывчатого разложения продукта все сушилки порофора оснащают автоматическими блокировками, отключающими подачу в аппарат горячего теплоносителя (азота, воздуха) и обеспечивающими подачу холодного газа. Кроме того, для предупреждения взрывов принимают эффективные меры, позволяющие предотвратить накопление пыли порофоров на строительных конструкциях здания, а также исключить источники инициирования взрыва пыли в аппаратуре и производственном помещении. [c.150]

    Например, торфяная пыль не взрывается, если в воздухе содержится меньше 16% кислорода, а пыль каменного угля становится неопасной при содержании двуокиси углерода в воздухе более 4%. Поэтому весьма эффективным средством предупреждения взрыва в распылительных сушилках может быть разбавление теплоносителя (воздуха) инертным газом до пределов безопасности с осуществлением рецикла теплоносителя. В качестве инертного газа для смешения с воздухом и компенсации потерь можно использовать топочные газы, перегретый водяной пар, азот и др. [c.155]

    Следует всегда помнить, что попадание взрывоопасных продуктов в систему инертного газа или воздуха, применяемых для передавливания или других технологических целей, представляет серьезную опасность, так как взрывоопасные примеси в этих газах могут привести к взрывам, загоранию или другим нежелательным последствиям. К авариям приводит и использование азота низкого качества для передавливания жидкостей. [c.210]

    Взрыв произошел при подаче азота в 1-й резервуар, а так как [c.211]

    Через 2 ч после взрыва в пробе азота, взятой из 4-го резервуара, было обнаружено 0,9% водорода, 0,8% метана и 0,1% пропан-бутана. Углеводороды и другие примеси были обнаружены и в пробе, взятой из азотной линии производства фенола и ацетона 2,5% водорода, 0,6% этана, 0,2% пропана, 0,1% бутана и 0,2% пентана. В пробе, взятой из азотной линии производства этилена, было обнаружено 11,5% водорода, 0,8% этана, 0,1% пропана и 0,2% бутана. [c.212]

    Мероприятия, рекомендуемые для предотвращения подобных взрывов, основаны на контроле накопления окислов азота в аппаратуре низкотемпературного блока, поскольку полностью удалить окислы азота из промываемого газа не представляется возможным. Установлена максимально допустимая норма накопления окислов азота в аппаратуре низкотемпературного блока. В аппаратах типа КР-32 содержание окислов азота, определяемое перманганатным методом, не должно превышать 5 кг. Если расчетное количество окислов азота в аппаратуре достигает 5 кг, то блок должен быть остановлен на отогрев и промывку. Количество накопившихся в аппаратуре окислов азота во многих случаях определяют по их содержанию в газе и расходу через низкотемпературный блок. Такая методика определения количества окислов азота, накапливающихся в аппаратуре, весьма несовершенна, так как анализы проводятся два раза в смену, и не исключена возможность залпового поступления больших количеств окислов азота в периоды между отборами проб газа. Поэтому для повышения безопасности процесса очистки конвертированного и коксового газа необходим непрерывный автоматический контроль содержания окислов азота с записью результатов на диаграмме. [c.23]

    По этой причине произошла авария в агрегате промывки газа жидким азотом на заводе аммиака компании Дау кемикл оф Канада (США). При взрыве были ранены три человека. [c.23]

    Образование треххлористого азота. Треххлористый азот (ЫС1з) образуется при взаимодействии хлора с аммиаком или солями аммония в водном растворе. Треххлористый азот — сильно взрывчатое вещество с температурой кипения 71 С, пЛотно сть его при комнатной температуре составляет/1,653 г/см (его плотность больше плотности жидкого хлора) взрывается в среде озона, а также при соприкосновении с предметами или руками, даже слегка загрязненными жиром. Треххлористый азот может образоваться в процессе электролиза поваренной соли, в также в холодильниках смешения. [c.55]

    Максимальное накопление нитромассы в аппаратуре низкотемпературного блока допускалось но регламенту 1,2 кг в пересчете на диоксид азота. Взрыв же произошел при наличии (по расчету) в аппаратуре 1,1 кг сконденсировавшихся оксидоБ азота, образовавших нитромассу в количестве, соот-ветствуюш ем 8 кг тринитротолуола. [c.206]

    В результате первых исследований действия излучений на различные твердые тела были установлены такие факты бесцветные стекла начинают окрашиваться, и это окрашивание исчезает при нагревании или длительном освещении светом а-излучение радия разрушает бумагу, шелк, льняные ткани резина при этом становится хрупкой, смазки для крагюв разлагаются, иодистый азот взрывается (интенсивное а-излучение) и галоидные соли серебра разрушаются. Очевидно, можно найти много и других примеров в зависимости от природы излучения и облучаемого материала. Основные наблюдаемые явления связаны с физическими [3], а не с химическими эффектами излучения, поэтому в данном разделе будут разобраны только общие принципы действия излучений на твердые тела без детального анализа самого механизма процесса. [c.352]

    Дихлорэтилен при осторожном смешении с дымящей HNO3 дает хлор- пикрин с перекисью азота взрывает при 30° С, при комнатной температуре через 24 часа образуется щавелевая кислота [191].  [c.564]

    Процессы глубокого охлаждения воздуха относятся к числу наиболее взрывоопасных. Причины взрывов, носящих большей частью разрушительный характер,—опасные примеси в перерабатываемом воздухе ацетилен, окислы азота, смазочные масла и продукты их термического и химического разложения и др. Опасность взрывов усугубляется тем, что крупные воздухоразделительные установки размещают, как правило, на территории лредщщя-тий, где особенно велика загрязненность воздуха. [c.121]

    В хлорных производствах отмечены случаи взрывов в холодильниках смешения, где для охлаждения хлора использовали воду, содержащую значительное количество солей аммония. Даже при малых концентрациях треххлористого азота в исходном хлоргазе в процессе сжижения хлора при низких температурах создаются благоприятные условия для конденсации треххлористого азота. По литературным данным, жидкий хлор, содержащий 0,2% N013, приобретает взрывоопасные свойства, если остаток первоначального объема жидкости после испарения хлора составляет 1,5—2,0%, а содержание в ней треххлористого азота превышает 5%. Остаток такой жидкости может взорваться при нагревании выше 95 °С, контакте с органическими веществами, ударе и трении. [c.55]

    При воспламенениях и взрывах во избежание усиления пожара и отравления людей запрещается применять воду во всех отделениях цеха. Для тущения используют песок, асбестовое полотно, кощму, сухие огнетущители и азот. В отделении цианамида кальция допускается применение двуокиси углерода. [c.75]

    При достижении концентрации аммиака в смеси 8,5% зажи-гают факелом газовую смесь на платиновых сетках. Через 15 мин концентрацию аммиака доводят до 9,85—10,4% и через 1-—2 ч после розжига реактор переводят на режим контактирования. Затем концентрацию аммиака увеличивают до 13,5%, вводят в смесь 16% азота, флегматизирующего взрывоопасность смеси, и затем медленно подают метан. Недостаточное количество азота может привести к взрывам. [c.81]

    Десорбция газов и испарение растворенных веществ из жидкости часто, встречаются в химических производствах. Во многих случаях десорбирующиеся газы и испаряющиеся вещества горючи и могут образовывать с воздухом взрывоопасные паро-газовоздуш-ные смеси. Это необходимо всегда помнить и принимать меры по предупреждению аварии. Однако допускаются случаи, когда аппаратура с растворами взрывоопасных веществ свободно сообщается с атмосферой, т. е. не исключается возможность образования взрывоопасных смесей десорбируемых из раствора газов с воздухом. Не всегда обеспечиваются средствами поддува азота и гидрозатворами сборники отработанных вод, насыщенных взрывоопасными газами. Отмечены случаи взрывов паров бензола с воздухом в емкости для сбора промывных вод в производстве [c.129]

    На пылеотделительной станции завода химического волокна произощел взрыв пыли полиамидной смолы. Установлено, что при передаче полиамидной крошки из химического цеха в прядильный цех вместе с крошкой транспортировалось и значительное количество мелкодисперсной пыли, котррая с кислородом образует взрывоопасную смесь. На этом заводе для системы пневмотранспорта применяли азот, содержащий значительное количество водорода и другие горючие газы, а также кислород. Пылегазовая смесь воспламенилась при разрядах статического электричества. [c.157]

    Взрыв произощел, как было указано выше, спустя несколько минут после подачи азота в резервуары с жидким хлором и явился результатом взаимодействия хлора с углеводородами, а возможно и с аммиачными соединениями, которыми в сильной степени был загрязнен азот. Такой процесс протекает с очень боль- [c.211]

    Аналогичный взрыв в агрегате промывки синтез-газа жидким азотом произошел на аммиачном заводе фирмы Киова Хакко Косио Ко. в Убе (Япония). [c.23]

    Полагают, что взрыв был вызван накопившимися в низкотемпературном блоке органическими веществами и окислами азота, образовавшими с непредельными углеводородами нитросоединения сложного состава, разложение которых привело к взрьгву. [c.23]


Смотреть страницы где упоминается термин Азота взрыв: [c.269]    [c.308]    [c.47]    [c.252]    [c.109]    [c.17]    [c.38]    [c.223]    [c.23]   
Лекционные опыты и демонстрации по общей и неорганической химии (1976) -- [ c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Взрыв



© 2025 chem21.info Реклама на сайте