Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация винилхлорида в газовой фазе

    В случае полимеризации винилхлорида, винилиденхлорида, винилацетата и других мономеров ионный механизм играет второстепенную роль, и все употребляемые катализаторы принадлежат к типу свободных радикалов . Так можно вызвать полимеризацию в газовой фазе гомогенным катализом при помощи свободных радикалов. Каталитическое влияние свободных радикалов в жидкой фазе уже было указано. Ионные катализаторы не оказывают влияния на эти мономеры в чистом виде, но могут вызывать полимеризацию в присутствии примесей, способных начать цепи по ионному механизму, что может иметь место в случае некоторых олефинов. [c.218]


    Производство метилхлороформа из винилхлорида реализуется по следующей технологической схеме (рис. 17) [146, с. 135]. Хлороводород и винилхлорид с содержанием влаги не более 0,003% подают в реактор гидрохлорирования 2, где в суспензии катализатора AI I3 в 1,1-дихлорэтане при 20 °С и давлении 0,245 МПа происходит образование 1,1-дихлорэтана. Применяют осушку хлороводорода с помощью рассола при —35 °С (/) с последующим отделением от механических примесей. Поддерживают некоторый избыток НС1 по отнощению к винилхло-риду, чтобы обеспечить полноту его конверсии. При более высокой температуре протекают нежелательные реакции конденсации, полимеризации винилхлорида, а также дегидрохлорирования 1,1-дихлорэтана. Температуру в реакторе поддерживают с помощью выносного холодильника 3, в котором циркулирует рассол, а возврат реакционной массы — боковой трубы реактора. В испарителе 4 продукт реакции отделяют от отходов, поступающих на сжигание. С верха реактора уходят НС1, винилхлорид и следы дихлорэтана, которые охлаждаются рассолом в холодильнике 10. 1,1-Дихлорэтан собирается в сборнике 5, а газовая фаза направляется в абсорбер 6 для получения хлороводородной кислоты. К 1,1-дихлорэтану добавляют порофор и подают в верхнюю часть реактора хлорирования 7. При необхо- [c.107]

    Предпринимались попытки полимеризации других мономеров в газовой фазе. Некоторые из них, например метилвинил-кетон [7] и хлоропрен [8, 9], полимеризуются при прямом облучении, другие, такие, как акрилонитрил, винилхлорид и стирол, требуют применения сенсибилизатора для обеспечения соответствующих скоростей инициирования [7]. [c.128]

    Обычно для осуществления радиационной полимеризации используют у-лучи радиоактивного кобальта ( Со) " . Полимеризацию проводят в массе > газовой фазе > , а также в смесях винилхлорида с некоторыми маслами - В твердом состоянии под влиянием -у-излучения винилхлорид не полимеризуется . [c.164]

    В последние годы развиваются способы синтеза ПВХ полимеризацией винилхлорида в массе при повышенном давлении и в газовой фазе при пониженном давлении. Генерация выбросов в атмосферу определяется прежде всего способом получения полимеров на основе винилхлорида. Поступает винилхлорид в атмосферу при вскрытии и чистке полимеризаторов и другого емкостного оборудования, при выделении ПВХ из суспензии в процессе центрифугирования, при сушке продукта горячим воздухом и при фасовке, а также в процессе переработки ПВХ. [c.169]


    Обычно винилхлорид получается при взаимодействии хлористого водорода с ацетиленом в газовой фазе другой путь заключается в дегидрохлорировании 1,2-дихлорэтана [65. Производство мономера для американского поливинилхлорида марвинол описано Рюбензаалем [66] оно полностью соответствует методу получения винилхлорида в Германии для производства полимера игелит 167]. В обоих случаях эквимолярную смесь сухого хлористого водорода и ацетилена (первый в небольшом избытке) пропускают при атмосферном давлении через многотрубный реактор с активированным углем, пропитанным катализатором, например хлорной ртутью. Реакция сильно экзотермична, и поэтому реактор необходимо охлаждать водой температура реакции 100—200°, в зависимости от длительности работы катализатора. Винилхлорид конденсируют путем охлаждения, а непрореагировавшие реагенты отгоняют. Главные примеси—ацетилен, 1,1-дихлорэтан и ацетальдегид— удаляют фракционированием, получая очень чистый винилхлорид. Ацетилен следует удалять особенно тщательно, так как он является активным ингибитором полимеризации винилхлорида 168]. В отсутствие кислорода мономер вполне устойчив и не требует стабилизации при хранении. [c.67]

    К гетерогенным (гетерофазным) полимеризационным процессам относят реакции, в которых растущие радикалы переходят из одной фазы в другую. Обычно это связано с образованием твердого нерастворимого полимера, в то время как мономер может присутствовать в газовой фазе (газофазная полимеризация) или жидкой (полимеризация в массе, растворе, эмульсии или суспензии). Такого типа процессы преобладают в радикальной полимеризации например, все галогензамещенные виниловые соединения (включая винилхлорид), акрилонитрил, этилен при высоких давлениях (в этом случае полимер образует жидкую несмешивающуюся с мономером фазу) и многие другие относятся к этому классу. [c.93]

    Процесс радиационной модификации поверхности обычно осуществляется облучением материала или изделия в контакте с прививаемым мономером или олигомером. Применительно к резинам этот вид модификации разработан мало. Описан способ повышения озоностойкости резин на основе СКИ-3 путем поверхностной прививки винилхлорида [80] имеются сведения о прививке метилметакрилата и винилацетата из газовой фазы к бу-тилкаучуку и винилхлорида к бутадиен-нитрильным каучукам [81]. Разработан процесс газофазной привитой полимеризации на поверхности тканей и волокон с целью повышения их адгезии к резинам. В текстильной промышленности этот процесс применяется для радиационной модификации поверхности синтетических волокон с целью улучшения прокрашиваемости, несминае-мости, водоотталкивающих свойств и т. д. [82, 83], причем в США и Японии он реализован в полупромышленном масштабе [84]. [c.220]

    Радиационная привитая сополимеризация из газовой фазы на вытянутых полиолефиновых волокнах и пленках, протекающая в адсорбционном слое, благодаря матричному влиянию структуры ориентированного полимера приводит к образованию привитого слоя в ориентированном состоянии [14, 73]. Этот эффект наблюдался при полимеризации акрилонитрила, винилиденхлорида, винилхлорида на вытянутых полиэтиленовых и полипропиленовых пленках и волокнах. Привитой слой может быть подвергнут химическим превращениям, например дегидрохлорированию, без нарушения ориентации. [c.67]

    Известное сходство с описанным процессом имеет полимеризация в жидкой фазе, когда она сопровонодается образованием нерастворимых полимеров. Это относится, в частности, к полимеризации акрилонитрила, винилхлорида и винилиденхлорида в отсутствие растворителей, так как перечисленные мономеры не растворяют своих собственных полимеров. Наиболее подробно изучен в этом отношении акрилонитрил. Как показал Бем-форд [13], полимер, выпадающий при полимеризации акрило-нитряла, содержит захваченные макрррадикалы, которые можно идентифицировать методом ЭПР. В отличие от полимеризации этилена в газовой фазе полимер в этом случае оказывается непроницаемым для мономера, если температура полимеризации не превышает 25—30° полиакрилонитрил в этих условиях не только не растворяется в акрилонитриле, но и не набухает. Вследствие этого переход макрорадикалов в твердую фазу (несмотря на то, что они остаются живыми ) равносилен кинетическому обрыву, подчиняющемуся кинетике первого порядка относительно концентрации растущих цепей. Конечно, такая иммобилизация относится не ко всем растущим цепям значительная часть активных центров находится на поверхности твердых частиц полимера, которые непрерывно сталкиваются друг с другом, что приводит к обычному бимолекулярному обрыву. Тем не менее скорость обрыва вследствие подобных встреч имеет меньшее значение, чем при реакции в гомогенных условиях. В результате общая скорость полимеризации акрилонитрила возрастает с конверсией, а порядок реакции по инициатору лежит между 0.5 и 1. Судьба захваченных макрорадикалов зависит от того, насколько набухает [c.273]

    М винилиденхлорида количество полимерных участков, содержащих подряд более трех остатков винилхлорида, становится незначительным при одновременном увеличении числа участ ков, содержащих подряд более десяти остатков винилиденхлорида. Увеличение однородности состава сополимера обеспечивается проведением сополимеризации в две стадии. Ко всему количеству винилхлорида на первой стадии добавляется часть винилиденхлорида, и окончательная полимеризация проводится при добавлении остальной части винилиденхлорида [991]. Для получения гомогенных высокомолекулярных сополимеров предлагается проводить реакцию в присутствии двух инициаторов, один из которых растворим в воде (например, ЫН45.20б, Н2О2), а другой — в органической фазе (азосоединения, гидроперекиси и органические перекиси) [992, 993]. В этом случае при 45° через 20 час. образуется стабильный латекс, из которого после осаждения и промывки получают чистый сополимер с выходом до 96%. Указывается, что сополимеры заданного состава можно получить, контролируя теплопроводность газовой фазы путем сравнения с известной теплопроводностью исходной смеси[89]. [c.298]


    Предложен непрерывный метод полимеризации винилхлорида в блоке [105, 106], заключающийся в том, что винилхлорид нагревается до т. кип. (40°) под давлением, в присутствии инициаторов или катализаторов. Часть мономера, содержащая поливинилхлорид, выводится из реактора. После отделения полимера непрореагировавший мономер в смеси с вновь добавленным винилхлоридом вводится обратно в реактор. Минскер, Шевляков и Разуваев [107], изучая роль кислорода в начальной стадии полимеризации винилхлорида, показали, что при блочной полимеризации до появления первых следов твердого полимера в реакционной массе идет накопление перекисных соединений. Скорость накопления перекисных соединений при одной и той же концентрации различных инициаторов различна (рис. 3) и определяется активностью инициатора по отношению к винил-хлориду. Продолжительность индукционного периода реакции полимеризации определяется содержанием в газовой фазе кислорода, за счет которого возникают перекиси. Образование перекисей заканчивается практически после полного израсходования кислорода. [c.364]

    Описана полимеризация винилхлорида в газовой фазе при облу-1ении рентгеновскими лучами в присутствии благородных газов аргона, криптона или ксенона) . При этом скорость полимери- .ации увеличивается пропорционально содержанию газа, что, по-зидимому, объясняется передачей энергии возбужденными атомами Злагородного газа мономеру. [c.167]

    В результате изучения свойств привитой пленки можно сделать заключение, что оптимальная степень прививки составляет 25—30%. В работе [659] исследованы закономерности и механизм радиационной прививки винилхлорида на полиэтилене из газовой фазы при 25, 50 и 80 °С и давлениях паров мономера 1, 2 и 4 кгс/см . Установлено, что скорость образования привитого полимера уменьшается с повышением температуры, в пределах от 1 до 150 рад/с линейно зависит от мощности дозы и пропорциональна квадрату величины давления мономера. Было показано, что исследуемый процесс протекает по ионному механизму. Полученные представления о механизме привитой полимеризации позволили разработать принципиально новый метод получения сополимера, исключающий образование гомополимера. С целью подавления гЬмополимеризации образующиеся ионы удаляют из реакционного объема с помощью электриче- [c.234]

    Эмульсионная полимеризация винилхлорида при пониженном давлении, т. е. меньшем, чем давление насыщенного пара мономера при температуре полимеризации, протекает при постепенном поглощении винилхлорида из газовой фазы (из пространства над реакционной смесью) с образованием более низкомолекулярного полимера [48]. В некоторых случаях приготовление и использование более низкомолекулярного поливинилхлорида вполне оправдано. Он требует для пластификации меньшего количества пластификатора, может перерабатываться при более низких температурах, чем обычный поливинилхлорид, пригоден для изготовления прессованных и экструдированных изделий, может быть применен в качестве добавки к высокомолекулярному поливинилхлориду для облегчения его обработки и совмещен с акрилони-трильным каучуком [66]. [c.220]

    Специальные порошкообразные адсорбенты на основе полиэтилена могут быть получены в результате радиационной полимеризации этилена в газовой или жидкой фазе (в присутствии разбавителя, не растворяющего полиэтилен) при температуре ниже температуры плавления полимера [408]. Поверхностная модификация полученного таким способом продукта, повышающая эффективность адсорбции газов, может осуществляться либо нанесением на его порошок или гранулы других полимеров (полистирола, поливинилацетата, поливинилхлорида, полиметилметакрнлата, найлона, полибутадиена и др.) из растворов, не растворяющих полиэтилен, либо привитой полимеризацией с ним виниловых мономеров (стирола, винилацетата, винилхлорида, винилиденхлорида, акриловой кислоты и др.) [409, 411]. Полимеризованный при мощности поглощенной дозы у-излучения 100 рад/с, температуре 30 °С и давлении 400 кгс/см порошкообразный полиэтилен с молекулярным весом плотностью [c.240]


Смотреть страницы где упоминается термин Полимеризация винилхлорида в газовой фазе: [c.43]    [c.162]    [c.163]    [c.167]    [c.404]    [c.18]    [c.445]   
Получение и свойства поливинилхлорида (1968) -- [ c.162 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Винилхлорид

Газовая фаза



© 2025 chem21.info Реклама на сайте