Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медные сплавы состав

    Электроосаждение медных сплавов возможно при использовании сложных щелочных цианистых растворов в температурных пределах 30—90° С (в зависимости от используемого раствора). Латунные и бронзовые изделия могут получать покрытие при использовании анодов соответствующего состава сплавов, причем катодная производительность и состав электролитических осадков зависят от плотности тока, применяемого в процессе осаждения. Большинство осадков обладает довольно хорошим блеском, но выравнивание в основном плохое или отсутствует. Для декоративного использования стали применяют обычно тонкослойные осадки, без грунта или в сочетании с никелем в целях улучшения выравнивания. При этом обычно наносят лак, чтобы избежать потускнения под влиянием атмосферных воздействий. В некоторых случаях можно использовать декоративное хромовое покрытие, но осадки сплавов меди часто имеют высокие внутренние напряжения, что может привести к серьезному растрескиванию хрома. Электролитические осадки бронзы могут служить в качестве защитных грунтовых покры- [c.95]


    Составы травильных растворов, главным образом для глянцевого травления, изменяются в зависимости от рода травящегося материала (состав медных сплавов) и от характера предварительной его обработки (вальцованный или литой материал). Для травления меди и латуни перед покрытием их другими металлами следует применять разбавленные водой растворы кислот. [c.373]

    О 4-113. Каков состав (в процентах) алюминиево-медного сплава, если при обработке 1,00 г его избытком кислоты выделилось 1,178 л водорода (в пересчете на н. у.)  [c.33]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Химический состав, скорости коррозии и типы коррозии, коррозионные характеристики под напряжением и вызванные коррозией изменения механических свойств меди приведены в табл. 86—89. Влияние длительности экспозиции на коррозию медных сплавов графически показано на рис. 105 и 112. [c.250]

    Марганец широко применяется в металлургии, главным образом в качестве легирующего компонента соответствующих видов стали (марганцовистые стали и др.), а также чугуна. Богатый марганцем сплав его с железом, называемый ферромарганцем, содержащий не менее 70% Мп, применяется как промежуточный материал, вводимый в легируемую сталь при ее выплавке, а также в качестве раскислителя. Марганец входит в состав многих электротехнических сплавов, марганцовых бронз, манганитов — медных сплавов высокого сопротивления с малым температурным коэффициентом. [c.148]

    Цинк, выделяемый из старого лома, главным образом из литья типографских форм, латуни и бронзы, составляет <5 % от общего количества используемого цинка. Новый лом образуется главным образом при переработке сплавов на основе цинка и меди, а также в виде шлаков в процессах гальваностегии и литья. Новый лом либо продается для переплавки, либо перерабатывается в качестве оборотного лома. Цинковые сплавы подвергают переплавке и дистилляции для получения иинка в виде товарного продукта. Сплавы на основе меди также подвергают переплавке и содержащийся в них цинк используют для производства латуни или бронзы. Основным источником старого цинкового лома являются детали автомобилей. В США имеется 100—150 предприятий по переработке автомобильного лома с годовой производительностью 6—8 мли. т лома, из которых 200 тыс. т приходится на долю цветных металлов. В их состав входит 57 % цинка, 33 % алюминия, 8 % меди и 2 % других металлов. За последнее десятилетие количество цинка, выделенного из старого лома цинковых сплавов, составило 8 % от количества цинка, используемого для получения сплавов на основе цинка. Количество цинка, выделенного из старого лома медных сплавов, составило 21 % от количества цинка, используемого для получения сплавов на основе меди. [c.398]


    При получении серебряных покрытий небольшой толщины на мелких изделиях из меди латуни мельхиора и других медных сплавов применяют контактное серебрение используя цинковый электрод Раствор имеет следующий состав (г/л) нитрат серебра 10 цианистый калий 30 температура ванны 60—70 С продолжи тельность погружения 2—3 мин [c.83]

    В настояш,ее время отечественная промышленность выпускает кремне-медные сплавы марок А, Б, В и Г, состав которых приведен ниже (в %)  [c.43]

    В последнее время широко используются нихромы — сплавы на основе N1, например Х20Н80, в которых вообще отсутствует железо. Упрочненные нихромы (Мо, Т1, В, 51) представляют собой конструкционные материалы, сохраняющие работоспособность до 1373—1473 К. Хром входит в состав медных сплавов, например, сплав БрХ0,8 — хромистая бронза — представляет собой упрочняемый сплав, сохраняющий электрическую проводимость чистой меди из него изготовляют электроды контактных сварочных машин, трущиеся контакты и другие подобные специальные изделия. Наконец, хром входит в состав сплавов на основе титана, алюминия и специальных сплавов, применяемых в электропромышленности. Широко используются антикоррозионные, декоративные и упрочняющие поверхностный слой покрытия из хрома.  [c.342]

    Средний состав может изменяться в широких пределах в зависимости от условий реакции и промоторов, применяемых для активирования кремне-медного сплава. [c.47]

    Средний состав, как и в случае синтеза метил- и этилхлорсиланов, может изменяться в широких пределах в зависимости от условий реакции и промоторов, применяемых для активирования кремне-медного сплава. [c.63]

    Медь и медные сплавы (латунь, бронзу, нейзильбер) травят сначала в течение нескольких секунд в таком составе 100 частей азотной кислоты, 1 часть сажи и 1 часть поваренной соли. Затем предмет поливают горячей водой и опускают на несколько секунд для травления под глянец в следующий состав 100 частей крепкой серной кислоты, 75 частей азотной кислоты и 1 часть поваренной соли. [c.440]

    За период с 1970 по 1975 гг. из общего количества извлеченного вторичного свинца 55 % составлял свииец, содержащий сурьму, 30 % мягкий свинец и 15 % свинец в виде свинцовых и медных сплавов. С 1973 г. количество извлекаемого свинца, содержащего сурьму, снизилось с 57 до 49 %, полученных в 1976 г. Количество извлеченного мягкого свинца увеличилось с 1973 по 1976 г. с 28 до 44 %. Такие изменения связаны с возросшим производством аккумуляторных батарей, не требующих технического обслуживания, для изготовления которых используются свинцовые сплавы, ие содержащие сурьму или содержащие малые количества ее. Основными видами продуктов, из которых свинец не может быть извлечен, являются бензин и красители. Не извлекается также значительная часть свинца, входящего в состав боеприпасов, фольги, припоев, а также используемого в процессах отжига в свинцовой ванне и гальванизации. Более подробно процессы извлечения свинца из лома и их влияние на окружающую среду рассмотрены в обзоре Нака и др. [15]. [c.230]

    Фракция А в основном состоит из неметаллов, фракция В — из легких металлов и сплавов, а фракция С — практически только из алюминия. В состав фракции В входят более тяжелые металлы, в основном медь и медные сплавы. Материал с с плотностью 2,79—3,32 присутствует в очень малых количествах. [c.285]

    В ряде случаев требуется установить содержание всех элементов, ионов или соединений, входящих в состав данного исследуемого вещества. Например, при анализе медных сплавов (бронз и латуней) определяют содержание меди, олова, свинца, цинка и других элементов. При анализе растворов электролитных ванн, применяемых для никелирования металлов, определяют содержание 2п +-, СЫ -, ОН -ионов и т. п. [c.15]

    Суспензии представляют собой взвеси тонкоизмельченного порошка полимера в спирте, иногда с добавлением ксилола или воды с поверхностно-активным стабилизатором. Суспензия должна иметь строго определенные тонину помола и фракционный (по размерам частиц) состав. Ею можно покрывать изделия из конструкционной и нержавеющей стали, никеля, хрома, кадмия, цинка, алюминия и т. д., но не из меди и медных сплавов, которые катализируют деструкцию полимера. [c.185]

    Химический состав некоторых медных сплавов приведен в табл. 34, 35. [c.371]

    Состав ингибирует коррозию железа и его сплавов, а также алюминия, олова, медных сплавов, свинца, припоев. Состав эффективен в качестве коррозионного ингибитора в открытых замкнутых водных системах при любых высоких и низких температурах. Композиция может быть использована в горячих или холодных водных системах, в горячих системах водоснабжения, паровых котлах и в системах охлаждения двигателей внутреннего сгорания. Композиция совместима как с известными растворами антифризов, так и с широко используемыми для этой цели спиртами. Она обеспечивает хорошую защиту от коррозии водяных рубашек, насосов, теплообменных поверхностей и других частей открытых систем. [c.28]


    Состав изученных медных сплавов [c.296]

    Высокая стойкость меди и медных сплавов в атмосферах объясняется образованием на их поверхности тонких защитных слоев, так называемой патины. По своему химическому составу последняя соответствует основной серно-медной соли. Сернистый ангидрид, ускоряющий обычно коррозию большинства металлов, играет в образовании зеленой патины положительную роль. В морской атмосфере в состав патины, возникающей на меди, входит и основная хлорная медь. [c.299]

    Медь высокой чистоты применяют также в машиностроении дли изготовления ответственных изделий из высокосортных медных сплавов, от которых требуется точно определенный состав. Наконец, в химической промышленности [акже применяю рафинирован)1ую медь для производства химически чистых солей меди. [c.425]

    Коррозионная агрессивность атмосферы является величиной не постоянной, а изменяющейся с погодой. Большое влияние имеет состав атмосферы и особенно содержание в ней коррозионно агрессивных компонентов. Для большинства технических конструкционных сплавов наиболее ускоряющими коррозионный процесс являются примеси сернистого газа, сероводорода, хлора. Для медных сплавов помимо этого коррозионно активной является также примесь аммиака. [c.5]

    Механизм образования медных накипей во многом остается еще невыясненным. Так, недостаточно изучен состав имеющихся в питательной воде продуктов коррозии медных сплавов, из которых обычно выполняются трубки конденсаторов турбин и подогревателей низкого давления. В условиях аминирования (см. 2.3), которое достаточно широко применяется на современных ТЭС, в питательной воде наряду с гидратированными окислами и ионами меди возможно присутствие различных медно-аммиачных комплексов. Данных о составе аммиачных комплексов, образую- [c.190]

    Предлагается следующий состав химического палладирования (моль/л) палладий хлористый 0,05 пирофосфат натрия 0,11 фторид аммония 0,3 аммиак 8, гипофосфнт иатрия 0,05, pH 10, температура 45—55 °С скорость осаждения 3—4 мкм/ч Из указанного раствора были получены светлые, гладкие палладиевые аокрытия толщиной до 10 мкм на меди и медных сплавах, на никеле, кобальте и их сплавах, серебре и платине. [c.88]

    ИМИЧЕСКИЙ СОСТАВ МЁДИ И МЕДНЫХ СПЛАВОВ. % (ПО МАССЕ) [c.251]

    При обезжиривании деталей из ксд-иых и цинковых сплавов используют электролит Ns 2, причем для медных сплавов обычно добавляют в состав Na N, который не только улучныет обезжиривающее свойство электролита, но и активирует поверхность меди. [c.79]

    Медь и медные сплавы также подвержены водородной коррозии. Это явление связано с восстановлением закиси меди Си20, которая входит в виде включений в состав многих медных сплавов  [c.166]

    Аппараты из меди применяют в химической, пищевой и других отраслях промышленности. В нефтеперерабатывающей промышленности преимущественно используют аппараты из медных сплавов, главным образом, латуней. Химический состав меди и медных сплавов, выплавляемых в США, приведен в приложении 23. Медные плиты марки SB-11 изготовляются толщиной до 50 мм из меди групп ЕТР, FRTR, DHP, АТР и DPA. Из меди группы АТР изготовляют, кроме того, прутки марки SB-12 и трубы марки SB-13. Эти трубы подвергают гидравлическому испытанию при давлении 50 кг см . Медь группы DPA, DHP и 0F служит для изготовления труб марки SB-75. Твердость таких отожженных труб — HRB 20. Медь этих же групп служит для выпуска конденсаторных трубок марки SB—111, применяемых в конденсаторах, эвапораторах и теплообменниках. Отклонение по наружному диамет-РУ У труб диаметром 25—38 мм составляет 0,08 мм, а у труб диаметром 38—50 мм равно 0,1 мм. [c.8]

    Присадки. Вводимые в смазки ингибиторы коррозии препятствуют протеканию электрохимических процессов на поверхности металла под воздействием внешней среды, а противокоррозионные присадки не допускают химического воздействия коррозионно-агрессивных компонентов смазки на поверхность металла. Выбор присадок зависит от многих факторов, среди которых важными являются условия применения смазок, состав металла и др. Для защиты черных металлов от химической коррозии используют сульфиды и дисульфиды. Для защиты свинца от действия аминов или свободных органических кислот применяют фосфиты и диалкилдитиофосфаты, для защиты меди медных сплавов — производные бензотриазола и меркаптобен-зотриазола. Противокоррозионные присадки, защищающие металл от химической коррозии, в условиях электрохимических процессов могут усиливать коррозию металла. [c.328]

    Обширные испытания одиннадцати медных сплавов в промышленных, морских и сельских атмосферах в течение 20 лет провел Треси [193]. Состав испытанных сплавов приведен в табл. 79, а характеристики атмосфер были даны в табл. 71. [c.296]

    Переплав, гомогенизация проб. В практической работе может оказаться, что анализируемая проба недостаточно однородна или имеет микроструктуру, отличающуюся от структуры стандартных образцов. За редким исключением (разд. 3.2.9), в этих случаях большинство спектральных методов дает неправильные результаты. Однако часто возможно исключить этот источник погрешности соответствующим переплавом анализируемой пробы, особенно в случае металлов и сплавов с не очень высокой температурой плавления. Стружку, массовую продукцию малых размеров, гвоз- ди, проволоку и т. д. можно быстро переплавить в более удобные для анализа тве[)дые образцы. Этот прием очень удобен. Необходимо особо строго следить за тем, чтобы во время переплава не изменился средний состав материала и чтобы образец сохранил мелкозернистую однородную микроструктуру. Это можно сделать с различными материалами, если использовать подходящую солв вую защиту (например, алюминиевые сплавы переплавляют под слоем криолита), или в более общем случае переплавом в атмосфере аргона в малогабаритной индукционной или дуговой печи или в печи сопротивления. После переплава энергичным охлаждением должно быть обеспечено быстрое отвердение расплава. Для сталей приемлема скорость охлаждения, равная 1800°С/с [8]. Используя такое оборудование, с низковольтной дугой при силе тока от 300 до 500 А, за время переплава, равное примерно одной минуте, можно изготовить диски весом 20—50 г из различных материалов, например из кусочков проволоки. Стали, медные и алюминиевые сплавы различных типов можно переплавлять, как правило, без изменения их состава. Потери компонентов возможны только при увеличении разности между температурами кипения основного и легирующих металлов. Например, за время переплава содержание марганца в стали уменьшается на 1—2%. В случае алюминиевых и медных сплавов испарение цинка может быть зна- [c.18]

    Состав медных сплавов разнообразен. Поэтому следует особенно заботиться о том, чтобы состав эталонных образцов и анализируе- [c.172]


Смотреть страницы где упоминается термин Медные сплавы состав: [c.36]    [c.273]    [c.685]    [c.157]    [c.141]    [c.170]    [c.342]    [c.212]    [c.36]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Медные сплавы состав и свойства

Медный

Сплавы медные



© 2025 chem21.info Реклама на сайте