Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стандартное химическое сродство образования

    Вычислить энергию кристаллической решетки фторида и иодида серебра, если известно, что стандартные энтальпии их образования соответственно равны —48,5 и —14,9 ккал/моль энергия химической связи в молекулах Рг и 1г составляет 37 и 35,6 ккал/моль сродство к электрону атомов фтора н иода равно 83,5 и 74,7 ккал/ моль энтальпия сублимации иода 15 ккал/моль, энтальпия атомизации и первый потенциал ионизации для серебра соответственно равны 66 и 174 ккал/моль. [c.232]


    Стандартное химическое сродство, как и изменение любой другой функции состояния (см. закон Гесса, разд. 11.14), может быть найдено из стандартных потенциалов образования компонентов реагирующей системы (подробнее см, в разд. 11.48). [c.136]

    Гидриды неметаллов. Соединения неметаллических элементов с водородом, в которых степень окисления водорода -f-I, называют гидридами неметаллов. Гидриды многих неметаллов газообразны, имеют ковалентный тип связей в молекулах. В подгруппах периодической системы с увеличением порядкового номера элемента стандартная энергия Гиббс-а образования гидридов неметаллов возрастает (рис. 79). Следовательно, уменьшаются химическое сродство между водородом и неметаллическими элементами и устойчивость молекул гидридов. Из гидридов галогенов — галогеноводородов — наиболее устойчивы молекулы HF, заметная диссоциация которых на атомы не наблюда- [c.236]

    I. Законы фотохимии. В фотохимии рассматриваются закономерности влияния электромагнитных колебаний видимого и ультрафиолетового участков спектра на реакционную способность химических систем. Общая реакционная способность химической системы характеризуется значениями стандартного сродства реакций АО (Т) и стандартного сродства в процессе образования переходного состояния Значения А0 (7 ) и АС (7) изменяются с изменением температуры. При повышении температуры в системе изменяется кинетическая энергия поступательного и вращательного движения молекул и энергия колебательного движения ядер атомов. В области средних температур энергия движения электронов при изменении температуры практически остается постоянной. Чтобы перевести электроны на более высокие электронные энергетические уровни, надо нагреть систему до высоких температур, при которых многие реагенты разлагаются. При воздействии на химическую систему электромагнитными колебаниями с частотой видимого и ультрафиолетового участков спектра изменяется энергия движения электронов. Поглощая квант энергии, электроны переходят с ВЗМО на НО Ю. Образуется возбужденная молекула, обладающая избыточной энергией. Распределение электронной плотности в возбужденных молекулах существенно отличается от распределения электронной плотности в исходных молекулах. Повышается энергия колебательного движения ядер. Физические и химические свойства возбужденных молекул отличаются от свойств молекул в невозбужденном состоянии. Появляется возможность получения новых веществ, синтез которых невозможен при термическом воздействии на систему. [c.610]


    Если не удается определить константу равновесия реакции взаимодействия исследуемой системы и вспомогательной, то химическое сродство AG° вычисляют по уравнению AG° = ДЯ° — TAS°. Тепловой эффект АН° реакции в растворе может быть определен калориметрически. Необходимые сведения об энтропии ионов в растворе можно найти в литературе, например [151, гл. 3 152, прилож. 1]. Стандартное химическое сродство реакции можно также вычислить, если воспользоваться свободными энергиями образования ионов в водном растворе. [c.71]

    Предлагаемый справочник представляет данные по стандартным энтальпиям образования атомов (табл. 4), стандартным энтальпиям образования радикалов (табл. 5, 6), энергиям диссоциации химических связей (табл. 1—3), потенциалам ионизации (табл. 7—9), сродству к электрону (табл. 10, 11) и протону (табл. 12).  [c.5]

    СТАНДАРТНОЕ ХИМИЧЕСКОЕ СРОДСТВО ОБРАЗОВАНИЯ [c.172]

    Выражение для изменения свободной энтальпии реакции (стандартное химическое сродство) через свободные энтальпии образования веществ, принимающих участие в реакции, по аналогии с соответствующим выражением для теплового эффекта, запишем в виде [c.173]

    В таблицах обычно даются следующие величины при стандартных условиях (Г = 298 К, р = 1,01 бар) изменения энтальпий образования (тепловые эффекты образования) 1 кмоля вещества (АЛ ) изменения свободных энтальпий образования (химическое сродство) [c.195]

    Многие считали, что появление ААС решит все проблемы в анализе следовых количеств металлов, поскольку здесь не должно быть помех в определении. Фактически же все методы, применяемые в ААС, чувствительны к помехам, имеющим различное происхождение [72, 74], хотя связанные непосредственно со спектральными линиями относительно редки [26]. Чем сложнее среда, тем возможнее помехи, которые могут либо ослаблять, либо усиливать поглощение. Если мы назовем помехой любой фактор, вызывающий отличие наблюдаемой величины сигнала от той, которую дает та же самая концентрация исследуемого элемента в стандартных условиях при оптимальных параметрах, список будет очень длинным. Некоторые изменения в параметрах прибора можно учесть путем осуществляемой до и после исследования проб тщательной калибровки по стандартам в той же среде. Если состав среды, в которой заключена проба, неизвестен или ее невозможно воспроизвести, то для компенсации химических помех применяют метод добавления стандарта. Этот метод не устраняет помехи, связанные с молекулярным поглощением или рассеянием из-за высокой концентрации солей. Если нет дейтериевой лампы, то для учета неспецифического поглощения следует проводить измерения как на резонансной линии, так и вне ее, но вблизи (неспецифическое поглощение). Разность этих двух сигналов пропорциональна действительной концентрации металла. Некоторые металлы, обладающие низкими энергиями ионизации, очень чувствительны ко всем изменениям концентраций ионов в образце. Обычно это нежелательное явление легко устраняется путем добавления к раствору металла с еще более низкой энергией ионизации. Анионы (например, РО ) могут подавлять сигнал, так как способствуют образованию молекул и затрудняют образование свободных атомов в пламени. Для преодоления этого затруднения добавляют избыток другого металла, который обладает большим сродством к мешающему аниону (например, для РОГ это La). Сигнал металла будет различным для различных растворителей или различных концентраций кислоты. Как правило, [c.553]

    При изучении химических взаимодействий очень важно оценить возможность или невозможность их самопроизвольного протекания при заданных условиях, выяснить химическое сродство веществ. Должен быть критерий, при помощи которого можно было бы установить принципиальную осуществимость, направление и пределы самопроизвольного течения реакции при тех или иных температурах и давлениях. Первый закон термодинамики такого критерия не дает. Тепловой эффект реакции не определяет направления процесса самопроизвольно могут протекать как экзотермические, так и эндотермические реакции. Так, например, самопроизвольно идет процесс растворения нитрата аммония ЫН4ЫОз (к) в воде, хотя тепловой эффект этого процесса положителен А/Йэв > О (процесс эндотермический), и в то же время невозможно осуществить при Т = 298,16 К и р = = 101 кПа синтез к-гептана С,Н1в (ж), несмотря на то, что стандартная теплота его образования отрицательна АЯгэа обр <0 (процесс экзотермический). [c.104]

    Определим химическое сродство реакции СН4 + 2Нг01 СО2 + + 4Нг (в стандартных условиях), используя табличные значения величин изобарных потенциалов образования всех участвующих в реакции веществ. [c.156]

    Сравнение различных веществ по их способности вступать в химическое взаимодействие друг с другом возможно лишь для определенных условий реакции. В качестве таких стандартных условий были приняты парциальные давления (или летучести) и концентрации (или активности), равные единице для веществ, участвующих в реакции при постоянной температуре. Количественной мерой химического сродства принимаются стандартные изобарные и изохорные потенциалы реакций. В табл. 24 приводятся величины стандартных изобарных потенциалов образования при 7 =298° К (AZjjj) для ряда соединений. Эти величины служат количественной характеристикой сродства между элементами в их обычном состоянии и, следовательно, мерой химической прочности соединения при комнатной температуре. Для самих элементов в их обычном состоянии стандартный изобарный потенциал образования полагается равным нулю. [c.98]


    Численное решение (5) проводили методом Ньютона. При расчете текущих значений энтропии смеси и химического сродства реакций (2) и (3) система рассматривалась как смесь идеальных газов. Температурные зависимости термодинамических переменных вычисляли из аппроксимащюн-ных формул для приведенных энергий Гиббса и стандартных энтальпий образования веществ, взятых из справочника [3]. [c.26]

    Стандартный окислительно-восстановительный потенциал фтора (2,85 В) свидетельствует, что фтор — сильнейший окислитель. Энергия ионизации у фтора высокая, но по величине сродства к электрону 350,7 кДж/г-атом он занимает промежуточное положение хмежду хлором (370 кДж/г-атом) и бромом (345 кДж/г-атом). Это является следствием относительно легкой диссоциации молекулы фтора. Чтобы заставить молекулу Рг распадаться на атомы, достаточно затратить всего 158,4 кДж/моль. Относительная легкость диссоциации объясняется взаимным отталкиванием 16 электронов (по 8 у каждого атома), которые не принимают участия в образовании химической связи и могут занимать только разрыхляющие орбитали. Атомы Р небольшие, расстояние между ними невелико, внутренних свободных d-орбиталей (которые могли бы служить, как у хлора, для образования дативных связей) у фтора нет все это обусловливает легкую диссоциацию и необычно высокую активность фтора. [c.236]


Смотреть страницы где упоминается термин Стандартное химическое сродство образования: [c.96]    [c.96]    [c.96]   
Смотреть главы в:

Курс химической термодинамики -> Стандартное химическое сродство образования


Курс химической термодинамики (1975) -- [ c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство

Стандартное химическое сродство

Химический ая стандартный

Химическое сродство



© 2025 chem21.info Реклама на сайте