Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молье энтальпия концентрация

    Энтальпией разбавления или разведения называют тепловой эффект взаимодействия раствора данной концентрации и чистого растворителя. Если раствор, содержащий один моль растворенного вещества, разбавляют от какой-то исходной концентрации до какой-то конечной (не бесконечно малой) концентрации, тепловой эффект называют промежуточной энтальпией разбавления или просто энтальпией разбавления. Если конечным состоянием при разбавлении является бесконечно разбавленный раствор, энтальпию разбавления называют интегральной. Если к бесконечно большому количеству раствора добавляется один моль чистого растворителя, то тепловой эффект называют дифференциальной теплотой разведения. Между интегральной и дифференциальной теплотами растворения существует связь. Теплота растворения т моль вещества (Д//) в п моль растворителя будет равна [c.375]


    Изменение энтальпии при переходе твердого, жидкого или газообразного вещества в раствор называют теплотой или энтальпией растворения. Различают интегральные, промежуточные и дифференциальные теплоты растворения. Интегральной теплотой, или энтальпией растворения, называют изменение энтальпии при растворении 1 моля вещества в некотором количестве чистого растворителя. Теплота растворения зависит от концентрации и от температуры, поэтому указание этих характеристик процесса является обязательным. Концентрацию раствора в термохимии обычно выражают величиной разбавления, т. е. числом молей растворителя, приходящимся на 1 моль растворенного вещества, а количественные соотношения компонентов при растворении представляют термохимическим уравнением. Так, например, растворение а молей РЬ(ЫОз)2 в Ь молях НдО можно представить термохимическим уравнением [c.64]

    Интегральной теплотой или энтальпией растворения называют изменение энтальпии при растворении 1 моль вещества в некотором количестве чистого растворителя. Концентрацию раствора в термохимии обычно выражают величиной разбавления, т. е. числом молей растворителя, приходящимся на 1 моль растворенного вещества, а процесс растворения представляют термохимическим уравнением. Так, например, процесс растворения а моль РЬ(МОэ)а в Ь моль воды можно представить уравнением [c.374]

    В уравнениях (ХУ.35) и (ХУ.Зб) АН° и — теплота активации, т. е. стандартное изменение энтальпии и внутренней энергии в процессе перехода исходного состояния в состояние активированного комплекса Д5° — энтропия активации, т. е. изменение энтропии при образовании одного моля активированных комплексов в стандартных условиях (при концентрациях активированного комплекса и исходных частиц, равных 1 моль/л, или активностях, равных единице). Значения Аи°= = и АН° не могут быть определены экспериментально, но они связаны с энергией активации эксп, получаемой опытным путем. При независимых параметрах р и Т [c.336]

    Как видно из таблицы, зависимость полученных величин энтальпии растворения К1 в диметилформамиде от концентрации является монотонной. Погрешность величины АН растворения, по-видимому, не превышает 0,01 ккал/моль для концентрации —10 гп и 0,05 ккал/моль для —10" т. [c.151]

    Диаграмма х — / используется и при расчете процесса смешения. Пусть требуется смешать потоки А (в количестве А молей с концентрацией х и энтальпией / ) и (в количестве В молей с концентрацией xf и энтальпией /д) в адиабатических условиях. Материальный баланс процесса J [c.99]


    Полной интегральной теплотой растворения называют изменение энтальпии при растворении одного моля вещества в таком количестве растворителя, которое необходимо для образования насыщенного раствора. Если растворение одного моля вещества происходит в бесконечно большом количестве раствора данной концентрации, тепловой эффект называют дифференциальной или парциальной энтальпией растворения. В этом процессе концентрация раствора остается неизменной, или, точнее, возрастает на бесконечно малую величину, которой пренебрегают. [c.375]

    Промежуточной энтальпией растворения называют изменение энтальпии при растворении 1 моля вещества в растворе, уже содержащем некоторое количество этого вещества. Если растворение 1 моля вещества происходит в бесконечно большом количестве раствора, тепловой эффект называют дифференциальной энтальпией растворения. В этом процессе концентрация раствора остается неизменной, или, точнее, возрастает на бесконечно малую величину, которой пренебрегают. Дифференциальная теплота растворения зависит от концентрации раствора. Очевидно, дифференциальная теплота растворения в чис-том растворителе характеризует, по сути дела, энергетику образования бесконечно разбавленного раствора и поэтому совпадает с первой интегральной теплотой растворения. Дифференциальную теплоту растворения в насыщенном растворе, или, точнее, в растворе, концентрация которого отличается от концентрации насыщенного на бесконечно малую величину, называют последней теплотой растворения. [c.65]

    При переходе к высокотемпературным реакциям пользование стандартными энергиями Гиббса и условиями А0°<0 и АС°>0 не приводит к однозначному решению — осуществима или неосуществима реакция при заданной температуре Т. Такое решение может быть принято лишь на основе значения энергии Гиббса А0г 0т< О и ДСт.>0), которая может быть вычислена, если известны энтальпия АНг и изменение энтропии при той же температуре. В более общем случае АОт реакции зависит также от давления и концентраций реагирующих веществ. Тем не менее, руководствуясь стандартными энергиями Гиббса АС°, можно в ряде случаев приблизительно решить, осуществима ли реакция при данных условиях. Так, если. А0°<0, реакция возможна если А<7°>0, но менее 80 кДж/молЬ( реакция возможна при определенной концентрации, температуре и давлении если же А0°>80 кДж/моль, предсказать возможность реакции затруднительно и для однозначного решения необходимо определить АО при заданных значениях Ри Т.  [c.83]

    В приложении 3 приведены табулированные стандартные свободные энергии образования соединений из элементов в их стандартных состояниях. Стандартные состояния для газа, чистой жидкости или чистого кристалла определяются таким же образом, как и в случае энтальпий для газа - парциальное давление 1 атм, а для чистой жидкости или чистого кристалла-обычно 298 К. Стандартным состоянием растворенного вещества в растворе считается концентрация 1 моль на литр раствора, т. е. 1 М раствор. Стандартным состоянием компонента раствора при табулировании энтальпий считается не 1 М раствор, а настолько разбавленный раствор, что добавление к нему дополнительного количества растворителя не приводит к новым тепловым эффектам. Однако поскольку энтальпия не слишком сильно зависит от концентрации (в отличие от свободной энергии, в чем мы убедимся в разд. 16-6), можно приближенно считать, что табулированные значения энтальпий относятся к 1 М раствору. [c.72]

    В уравнениях математического описания реакционных процессов в реакторах с мешалками использованы следующие условные обозначения информационных переменных а, Ь, с — стехиометрические коэффициенты А, В. С — реагирующие вещества С — концентрация компонента Ср —удельная теплоемкость потока реакционной массы Е — энергия активации fi — площадь теплообмена между реакционной массой и стенкой реактора — площадь теплообмена между стенкой реактора и хладагентом в рубашке Рз — площадь теплообмена между реакционной массой и стенкой змеевика 4 —площадь теплообмена между стенкой змеевика и теплоносителем в змеевике G — массовый поток вещества ДС — изменение массового потока реагента за счет диффузии и конвекции А — удельная энтальпия ДЯг — тепловой эффект реакции при постоянном давлении при превращении или образовании 1 кмоль компонента — длина змеевика т —число компонентов реакции Ai — молекулярная масса реагента п —порядок реакции /V —число молей Qnp —скорость подвода энергии (тепла) Qot — скорость потока энергии (тепла) в окружающую среду R — газовая постоянная Т — абсолютная температура — температура / — общая внутренняя энергия системы, [c.67]


    Сушествование и роль ММВ с участием протона в нефтяных системах доказаны экспериментально [23,29,69,75,141,143,154...157]. Так, в асфальтенах природных битумов и нефтей значительная часть кислорода входит в состав ОН-групп, почти полностью участвующих в образовании комплексов с Н-связью и не исчезающих даже при очень больших разбавлениях четыреххлористым углеродом [70,75,141,157]. Интенсивность Н-связей возрастает с увеличением содержания кислорода во фракциях асфальтенов или с ростом их полярности [141]. Аналогично ведут себя и КН-группы. Многие гетероорганические соединения битума, в частности, содержащие кетонные, хинонные, карбоксильные и циклические амидные группы, ведут себя как Н-акцепторные основания и активно участвуют в образовании Н-связи [141,157]. Асфальтены и их групповые компоненты при взаимодействии с фенолом и двухатомными спиртами проявляют свойства Н-акцепторных оснований и образуют Н-связи с энтальпией 23-24 кДж-моль- [141,154] не исключается образование и более слабых Н-связей. Концентрация Н-акцепторных оснований в асфальтах не менее 2 ммоль-г а окисление воздухом при повышенных температурах вызывает увеличение их Н-акцепторной основности [154]. Метилирование, ацетилирование и другие реакции связывания активного водорода значительно увеличивают Н-акцепторную основность асфальта, что указывает на то, что в асфальте Н-кислоты и Н-основания находятся в Н-связанном состоянии [141,143,154]. Не исключается возможность образования внутримолекулярных Н-связей [141,143,155]. [c.66]

    При этой температуре, как видно из рис. (У.14), энтальпия водорода примерно в 8 раз больше энтальпии аргона, а степень диссоциации На на атомы достигает почти 96%. При охлаждении водорода от 5000 до 1700° К, т. е. до температуры, когда реакция (У.61) протекает еще со значительным выходом, 1 тль водорода отдает около 135 ккал. Этого количества теплоты достаточно для нагревания примешиваемого к плазменной струе холодного метана и образования одного моля ацетилена. В этих же условиях из более тяжелых углеводородов образуется до 1,3—1,4 моль С2Н2. Весьма существенно, что в струе водородной плазмы достижимы значительно большие степени превращения метана (и других углеводородов) в ацетилен (80—85%) по сравнению с прямым воздействием электрической дуги на углеводород . Поэтому водород плазмы не снижает концентрацию получаемого ацетилена. [c.152]

    Она является свойством растворителя и не зависит от природы растворенного вещества. Величина А Я принимается равной энтальпии испарения чистого растворителя. Математические допущения, принятые при выводе (125.13), делают его пригодным только для растворов, концентрация которых не достигает 1 моль/1000 г растворителя. Уравнение (125.13) относится к предельно разбавленным растворам и лежит в основе эбулио-скопического метода определения молекулярной массы растворенного вещества  [c.357]

    Эти величины дают соответственно изменение энтропии и энтальпии при образовании одного моля активированных комплексов ири стандартных концентрациях активированных комплексов и реагирующих частиц. [c.95]

    Химические уравнения, в которых указан тепловой э(М)ект реакции при постоянных давлении и температуре (ДЯ процесса), называются термохимическими. Тепловой эффект ДЯ считают положительным для эндотермических процессов и отрицательным для экзотермических (рис. 2.1). Значение ДЯ реакции (в кДж) записывают после уравнения реакции (через точку с запятой), при этом значение ДЯ относят к числу молей веществ, участвующих в реакции, которое указывают стехиометрическими коэффициентами, они бывают не равны 1 и дробными (поэтому слово моль в единицах энтальпии кДж/моль опускают). Кроме того, в термохимических уравнениях отмечают состояние веществ (к) - кристаллическое, (ж) - жидкое, (г) - газообразное, (р) - растворенное (считают, что раствор по свойствам не отличается от предельно разбавленного, если это не так, то указывают концентрацию растворенного вещества). Если специально не оговорено, то энтальпия реакции приводится для стандартной температуры 25 С (298,15 К) и стандартного давления 101 кПа (1 атм), т. е. указывается стандартная энтальпия ДЯ. В термохимических уравнениях между системами реагентов и продуктов реакции ставят знак равенства (а не стрелку). [c.174]

    Теплота растворения зависит от того, как образуется раствор, и от концентрации раствора. Раствор любой заданной концентрации можно приготовить смешением чистых компонентов или добавлением одного из компонентов к раствору с некоторой начальной концентрацией. Изменение энтальпии при растворении 1 моль чистого вещества в таком количестве молей растворителя, которое отвечает получению раствора желаемой концентрации, называется интегральной теплотой растворения. Запись [c.82]

    Термодинамические функции состояния характеризуют термодинамические свойства вещества. К их числу наряду с внутренней энергией U и энтальпией Я относятся энтропия S, энергия Гельмгольца F и энергия Гиббса G. Значения этих функций связаны с особенностями состава и внутреннего строения вещества, а также с внешними условиями давлением, температурой, концентрацией растворенных веществ и т. п. Термодинамические функции состояния являются экстенсивными свойствами их величины зависят от количества вещества. Именно поэтому A У, АЯ, AS, AF и AG принято относить к одному молю вещества и выражать в кДж/моль , имея в виду, что и объем V в произведении pV [см. уравнение (IV.7)] —молярный объем газообразного вещества. [c.88]

    Интегральная энтальпия растворения соли — это изменение энтальпии, сопровождающее процесс изотермического растворения 1 моль соли в данном количестве моль растворителя с образованием раствора концентрации гп. Значение ДЯт зависит от концентрации полученного раствора, поэтому для данной соли можно получить ряд значений ДЯт , отвечающих [c.387]

    Величина АЯт отвечает образованию насыш,енного раствора ее называют полной интегральной энтальпией растворения. Промежуточной энтальпией растворения АЯ и т. п. называют изменение энтальпии, сопровождаюш,ее процесс растворения 1 моль соли в растворе концентрации т с образованием раствора концентрации m2. Значение обычно относят к средней концентрации раствора. [c.388]

    Такое полимеризационно-деполимеризационное равновесие, как любое термодинамическое равновесие, подчиняется уравнению изотермы реакции Л0= ДС -Ь/ Пп АГ, а К — к поскольку (R-I = [RM ]. Отсюда следует, что для любой концентрации мономера существует 7 , выше которой преобладает деполимеризация, а АЯ° (Д5 4 -Ь/ 1п 1М))- где ДЯ" и Д5 — разность стандартных энтальпий и энтропий образования мономера и полимера при Т , М — концентрация мономера в жидком состоянии. Чаще всего деполимеризация идет через свободные макрорадикалы, и необходимое условие деполимеризации — генерирование свободных радикалов и возникновение мак-рорадииалов со свободной валентностью на конце. Параллельно с деполимеризацией идут другие процессы передача цепи на полимер, отщепление боковой группы, рекомбинация и диспропорционирование двух макрорадикалов. Константа скорости отщепления мономера от концевого радикала к = ,, + q, где — энергия активации присоединения мономера к макрорадикалу д — теплота присоединения мономера к макрорадикалу q 90 кДж/моль (винилацетат) 78 (метилакрилат) 70 (стирол) 58 (метилметакрилат), 35 кДж/моль (а-метилстирол). С высоким выходом мономера деполиме-ризуются полиметилметакрилат, поли-а-метилстирол, полиметакрио-лонитрил, поливинилиденцианид, полистирол. Для чистого мономера [c.287]

    Под интегральной энтальпией разбавления понимают изменение энтальпии, сопровождающее разбавление раствора данной концентрации, содержащего 1 моль соли, до бесконечно разбавленного раствора. [c.388]

    Различают идеальные и реальные растворы. В идеальных растворах компоненты смешиваются, как идеальные газы, без изменения объема и энтальпии. Увеличение энтропии таких растворов рассчитывают по уравнениям для идеальных газов. Растворы, подчиняющиеся законам идеальных растворов прн всех концентрациях, называют совершенными-, если это условие соблюдается лишь при сильном разбавлении, то их называют бесконечно разбавленными. Чем меньше концентрация раствора, тем ближе его свойства к свойствам идеального раствора. Изучение свойств идеальных растворов (давление насыщенного пара, температура кипения, температура кристаллизации) используют для определения молекулярного веса, стспенн диссоциации растворенных веществ. В физико-химических исследованиях концентрацию растворов выражают через моляль-ность — число молей вещества на 1000 г растворителя или мольные доли, равные числу молей вещества, деленному на число молей всех компонентов в растворе. Для бинарного раствора (из компонентов А и В с числом модей Пд и мв) мольные доли компонентов Л д и Мц равны  [c.43]

    Если изменение энтальпии относится к реакции образования химического соединения из простых веществ, то такое изменение энтальпии носит название энтальпии образования и обозначается АЯобр- Все изменения энтальпии, в том числе и энтальпии образования, зависят от условий проведения опыта, количества, концентраций и парциальных давлений компонентов. В справочниках обычно приводят так называемые стандартные энтальпии образования, которые относятся к образованию 1 моля соединения из простых веществ в их устойчивых состояниях при 25° (298° К) и давлении 1 атм. Стандартные энтальпии образования обозначаются АЯ р,,298 Ниже, для экономии места, будем индексы стандартного состояния и температуры опускать. Энтальпии образования простых веществ при стандартных условиях в их наиболее устойчивых при этих условиях состояниях принимаются равными нулю. [c.55]

    Рассчитайте количество джоулевой теплоты, выделяющейся за 1 ч в электролизере для получения металлического марганца из растворов после выщелачивания карбонатных руд (см. задачу 351) токовой нагрузкой 4000 А и напряжением на ванне 5,1 В. Электролизер работает с катодным выходом по току марганца 60 % и анодным выходом диоксида марганца 6,0 %. Изменение энтальпии Н.2504 при ее разбавлении до концентрации отработанного электролита составляет — 77,3 кДж/моль. [c.276]

    Энтальпии растворения L-серина в водных растворах сахарозы различного состава (0.00 < < < 0.20 моль/кг) измеряли на калориметре с изотермической оболочкой при 298.15 К. Вследствие плохой кинетики растворения DL-лейцина в воде на указанном калориметре были измерены энтальпии растворения сахарозы в водных растворах DL-лейцина, концентрация которого изменялась в пределах 0.00 < 0.10 моль/кг. Концентрация растворенного вещества не превыщала 2x10" моль/кг. Детали устройства калориметра и методика эксперимента описаны ранее [2]. (Индекс X относится к растворенному веществу, индекс у - к неводному компоненту растворителя. [c.187]

    Мы уже упоминали, что свободная энергия является функцией состояния. Это означает, что стандартные свободные энергии образования веществ можно табулировать точно таким же образом, как табулируются стандартные энтальпии образования. Важно помнить, что стандартные значения этих функций относятся к определенному набору условий, или стандартных состояний (см. разд. 4.5, ч. 1). Стандартным состоянием для газообразных веществ является давление в 1 атм. Для твердых веществ стандартным является чистое кристаллическое состояние, а для жидкостей-чистая жидкость. Для веществ в растворах стандартным состоянием считается концентрация 1 моль/л для более точных исследований в такое определение приходится вводить некоторые поправки, но мы можем обойтись без них. При табудировании данных обычно выбирают температуру 25°С. Точно так же, как и для стандартных теплот образования, свободные энергии элементов в их стандартных состояниях условно полагают равными нулю. Такой условный выбор точки отсчета не оказывает влияния на величину, которой мы в действительности интересуемся, а именно на разность свободных энергий между реагентами и продуктами. Правила определения стандартных состояний сформулированы в табл. 18.1. Таблица стандартных свободных энергий образования помещена в приложении Г. [c.185]

    Измеряют энтальпию растворения сульфита и селенита натрия (или калия) в смешанных растворителях вода — изопропиловый спирт и вода — этилснгликоль [концентрация спирта и этиленгликоля от 0,5 до 10% (мол.)]. Определение энтальпий проводят с помощью калориметрической установки (см. Работу 4). [c.194]

    Свойства растворов, как и других систем, делят на интенсивные (не зависящие от массы) и экстенсивные (зависящие от массы). Если массы всех компонентов раствора (растворителя и растворенных веществ) увеличить в п раз при постоянных температуре и давлении, то интенсивные свойства раствора (концентрация, плотность, вязкость) не изменяются, а экстенсивные свойства (объем, теплоемкость, внутренняя энергия, энтальпия) возрастут также в п раз. Если система состоит из о д н о г о компонента, т. е. это индивидуальное вещество, то его состояние характеризуют молярными величинами экстенсивных свойств (молярным объемом, молярной теплоемкостью, молярной внутренней энергией и т. д.), которые не зависят от массы. Если система состоит из д в у х (и более) компонентов (например, раствор), то молярные величины экстенсивных свойств каждого компонента зависят от массы всех компонентов, т. е. от состава раствора. Поэтому для характеристики состояния многокомпонентных систем применяют парциальные молярные величины. Чтобы раскрыть их сущность, допустим, что раствор состоит из Л , 2, з числа. молей отдельн1)1х компонентов (общее число компонентов г). Если в такой раствор ввести I моль первого компонента при постоянных температуре и давлении, то [c.72]

    Результаты температурных измерений изобразите графически. Вычислите тепловое значение калориметра и тепловой эффект процесса. По уавнению реакции, зная навеску цинка и концентрацию раствора меди, определите, какое из веществ было взято в избытке. Вычислите энтальпию процесса в расчете на 1 моль того вещества, которое полностью израсходовалось в процессе взаимодействия цинка и ионов меди. Эксг перимент желательно повторить дважды и воспользоваться средним значением энтальпии процесса. [c.352]

    Пример 2. В системе таллий (2) — ртуть (1) изменения парциальных мольных изобарных потенциалов и энтропий таллия и ртути при 298° К для раствора с мольной долей таллия 7У2 = 0,45 равны Д02=—163,3 дж1моль, А0 =—2130 дж1моль, Л52=3,48 дж/мольх Хград, Д5, = 5,4 дж моль-град. Определить изменение парциальных мольных энтальпий, а также изменение энтальпии, энтропии и изобарного потенциала при образовании 1 кг раствора данной концентрации из чистых компонентов. [c.164]

    Это важное уравнение, дающее зависимость константы равновесия от температуры, называется изобарой Вант-Гоффа. Оно показывает, что знак производной ё1пКр1 .Т определяется знаком энтальпии реакции. Если реакция сопровождается выделением тепла, т. е. величина АЯ° отрицательна, то производная также отрицательна, и, следовательно, константа равновесия уменьшается с ростом температуры. Это означает, что при увеличении температуры равновесные парциальные давления (концентрации) продуктов реакции уменьшаются, а исходных веществ — увеличиваются. Таким образом, выход продуктов при экзотермических реакциях уменьшается при увеличении температуры. Нап])имер, рассмотренная реакция синтеза аммиака идет с выделением тепла (ДЯ298 =—46,0 кДж/моль), и выход ЫНз уменьшается при высоких температурах. Поэтому в промышленности этот процесс осуществляют при сравнительно низкой температуре, а для ускорения реакции используют катализаторы. [c.53]

    Если добавлять 1 моль вещества (растворителя или соли) к бесконечно большому количеству раствора, то концентрация его не изменяется. В этом случае разбавление или растворение сопровождаются дифференциальными энтальпиями разбавления ARi и растворения ДЯг ДЯ1 — это изменение энтальпии, сопровождающее (при Т = onst) добавление 1 моль растворителя к бесконечно большому количеству раствора данной концентрации, а ДЯа — это изменение энтальпии, сопровождающее добавление (при Т = onst) 1 моль соли к бесконечно большому количеству раствора данной концентрации [c.388]

    В термохимических уравнениях химических реакций тепловой эффект указывают при помощи величины АЯ, которая называется изменением энтальпии (теплосодержания) реакции. Если реакция протекает при стандартных условиях (температуре 298,15 К или 25 С, давлении 101 325 Па, концентрации всех веществ в растворе или в газе 1 моль в литре), то изменение энгальпии обозначают символом ДЯ . [c.35]

    При переходе от энтальпии гидролиза к свободной энергии следует принимать во внимание концентрации растворенных в воде веществ и, что особенно важно, pH раствора. При той (очень малой) концентрации водородных ионов, которая обычна в живых клетках, экзо-свободыоэнергетичес-кий эффект в расчете на один моль АТФ согласно эксперименту близок к [c.329]


Смотреть страницы где упоминается термин Молье энтальпия концентрация: [c.246]    [c.506]    [c.98]    [c.56]    [c.174]    [c.72]    [c.243]    [c.181]    [c.83]    [c.388]    [c.746]    [c.222]   
Разделение многокомпонентных смесей (1965) -- [ c.252 , c.255 , c.256 , c.261 ]




ПОИСК





Смотрите так же термины и статьи:

моль

моль моль



© 2025 chem21.info Реклама на сайте