Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры и полимерные материалы каучук натуральный

    Химическая деструкция напоминает некоторые окислительно-восстановительные процессы, иногда сопровождающиеся промежуточным образованием свободных радикалов, и гидролитические реакции, протекающие под действием биологических факторов (природные ферментативные системы, микроорганизмы) при этом существенное значение имеют состав и физико-химическая структура полимерного материала. В то время как многие высокомолекулярные соединения (нитраты целлюлозы, поливинилацетат, казеин, натуральный и некоторые синтетические каучуки) подвергаются биологической коррозии, полиэтилен, полистирол, тефлон и ряд других полимеров устойчивы к ней. [c.626]


    При пластикации или вальцевании полимера такого типа, как натуральный каучук, возникают напряжения сдвига, приводящие к разрыву межмолекулярных связей или основной цепи. Разрыв межмолекулярных связей приводит к течению материала, в то время как при разрыве полимерной цепи образуются макрорадикалы, способные реагировать с кислородом, виниловыми соединениями, а также с полимерами по ранее описанным схемам. [c.196]

    В макромолекуле расположение атомов в концевой группе, как правило, отличается от их расположения в повторяющихся звеньях, которые составляют основную (по весу) часть молекулы. Если известен характер этой концевой группы и есть методы, которыми можно определить число таких концевых групп в данном весовом количестве материала, то вес каждой молекулы можно было бы найти просто делением веса вещества на число концевых групп. У макромолекул полимерных материалов, подобных натуральному каучуку, характер концевых групп не известен, но при получении синтетических полимеров из низкомолекуляр-ных соединений часто бывает возможно вводить в молекулу концевые группы определенного типа. Например, при взаимодействии кислоты, взятой в избытке, со спиртом образующиеся длинноцепочечные молекулы имеют по две кислотные группы. Эти группы можно оттитровать щелочью и таким образом определить число концевых групп в данном количестве материала. Этот метод, однако, [c.60]

    Таким образом, снижение вязкости полимеров в процессе течения, особенно при их интенсивной переработке на оборудовании, может происходить не только вследствие неньютоновского характера течения, но и вследствие уменьшения размеров движущихся частиц. Такой эффект не обязательно должен сопровождаться уменьшением молекулярного веса полимера. Известно, например, что при переработке натурального каучука в условиях, исключающих доступ кислорода и, следовательно, предотвращающих гашение образующихся макрорадикалов, вязкость материала падает при росте молекулярного веса. Возникают такие пространственные образования, так называемые микрогели, которые представляют собой высокомолекулярные, но очень компактные разветвленные частицы, испытывающие меньшее сопротивление при вязком перемещении [91. Увеличение молекулярного веса в процессе переработки может привести даже к потере растворимости полимерного материала. [c.176]


    Процессы гидрохлорирования почти всегда сопровождаются циклизацией полимера либо за счет отщепления хлористого водорода от соседних звеньев, либо под действием катиона в полимерной цепи. Гидрохлорид натурального каучука обладает высокой прочностью и эластичностью и находит применение для получения пленок, используемых в качестве упаковочного материала в пищевой промышленности, [c.227]

    Уильбурн [1509, 1510] и другие [135, 1264, 1511, 1512] при исследовании динамических свойств полиметилметакрилата и его сополимеров установили наличие нескольких областей перехода (т. е. областей температуры и частоты, в которых быстрое изменение модуля упругости сопровождается максимумом потерь). Переход для полиметилметакрилата при 100° связан со стеклованием, а переход пр и 50°— с проявлением подвижности боковых групп. Для полиметилметакрилата, привитого к натуральному каучуку, наблюдается второй максимум потерь при 130°, но абсолютная высота этого максимума меньше, чем для простой смеси соответствующих полимеров. На этом основании авторы предлагают использовать динамические испытания в качестве дополнительного средства для установления структуры и состава полимерного материала. [c.504]

    Синтетические эластомеры так же, как натуральный каучук, построенные из длинных, гибких цепных молекул, образуют при структурировании трехмерную пространственную сетку. Некоторые материалы обладают в значительной мере каучукоподобными свойствами даже без структурирования (так, иногда в полимерах переплетения между цепями действует как псевдопоперечные связи) этот эффект исчезает при достаточно высоких температурах. Следовательно, температурный интервал использования таких материалов довольно ограничен. Структурирование можно осуществить на стадии полимеризации при использовании нескольких процентов реагентов, функциональность которых выше двух. Однако полученные таким путем материалы обычно нерастворимы и не легко поддаются переработке в конечные изделия. Чаще всего используемая методика получения синтетических эластомеров заключается в первоначальном синтезе линейного полимерного материала, который затем смешивают с соответствующим вулканизующим агентом (наполнителем и т. д.), формуют в изделие желаемого профиля и вулканизуют. [c.240]

    Блоксополимеризация оказалась наиболее эффективным методом модифицирования свойств натурального каучука и синтетических полиизопреновых и полибутадиеновых каучуков. Прививка каучука легко происходит в условиях его пластикации на вальцах. При вальцевании смеси полимеров на охлаждаемых вальцах в атмосфере азота происходит перетирание материала, сопровождающееся механической деструкцией его макромолеку- чярных цепей с образованием свободных радикалов, длительность существования которых достаточно велика. Большая длительность жизни этих радикалов обусловлена высокой вязкостью вальцуемой смеси, замедляющей взаимодействие макрорадика-лов, и отсутствием в реакционной среде активного реагента—кислорода. По мере увеличения концентрации макрорадикалов возрастает вероятность их взаимного насыщения с образованием новых полимерных цепей. В состав новых цепей входят блоки макромолекул обоих обрабатываемых компонентов. Таким [c.537]

    Кристаллизующиеся полимеры метод полимеризащ1и. Обычно немногие полимеры являются высококристаллическими. Полистирол и полиметилметакрилат, полученные нри свободно-ра-дикальной полимеризации, совершенно аморфные материалы, которые не проявляют какой-либо тенденции к кристаллизации. Наряду с этим политетрафторэтилен легко кристаллизуется и, как правило, находится в кристаллическом состоянии. Натуральный каучук, однако, обычно существует в аморфном состоянии, по кристаллизуется нри растяжении или при низкой темнературе. Часто для достижения кристалличности полимеров требуются весьма жесткие условия даже если существует полная структурная упорядоченность, могут быть необходимы особая обработка и экстремальные давление и температура. Упорядоченная макроскопическая структура (кристаллический материал) в общем является результатом высокой степени однородности молекулярной структуры. Из-за больших размеров молекул полимеров имеется большая возможность образования, в полимерных цепях структурных дефектов и нарушений. Часто встречаются два структурных дефекта, нарушающие однородность строения цени 1) беспорядочное разветвление и 2) беспорядочность асимметрии атомов углерода в цени. Эти дефекты являются результатом способа полимеризации гомогенная свободнорадикальная полимеризация при достаточно высоких температурах благоприятствует возникновению обоих дефектов. [c.273]

    Полимерные мембраны с высокой степенью кристалличности обычно менее проницаемы, чем аморфные мембраны. Считается, что молекулы пермеата, как правило, нерастворимы в кристаллических областях, и транспорт осуществляется в аморфной области. Поэтому кристаллизация приводит к уменьшению объема аморфного материала, в котором возможен перенос молекул пермеата, и увеличению извилистости пути через мембрану. Ла-зоский и Кобс [15] изменяли степень кристалличности полиэти-лентерефталата, который можно резко охлаждать при переводе из расплавленного состояния в аморфное, путем отжига за различные интервалы времени при температуре несколько выше 100 °С. Было установлено, что стационарное проникание водяных паров через эти мембраны уменьшилось при возрастании кристалличности от О до 40%. Рейтлингер и Ярко [16] наблюдали обратную зависимость между плотностью полимера и проницаемостью в процессе изотермической кристаллизации натурального каучука. Проницаемость зависит от микрокристаллической структуры полимерной мембраны, что также обусловливает линейную зависимость между влагопоглощением и долей аморфной фазы в целлюлозе [17]. Более того, при гидролитическом или бактериальном разрушении полимерных мембран в первую очередь и в сильной степени воздействию подвержена аморфная область [18]. Это явление было положено в основу экспериментального метода определения способности к деструк- [c.115]


    ВУЛКАНИЗАЦИЯ — технологич. процесс резинового произ-ва, при к-ром пластичный сырой каучук превращается в эластичную резину — материал, обладающий лучшими, чем каучук, физико-механич. и эксплуатационными свойствами. В большинстве случаев В. каучуков общего назначения (натуральный, бутадиеновый, бутадиен-стирольный) производится серой или какими-либо другими химич. агентами, к-рые образуют химич. связи между молекулами каучука. В результате такого процесса образуется пространственная молекулярная сетка со специфич. свойствами вулкапизата — наличием конечного значения модуля эластичности и неспособностью к самопроизвольному растворению в обычных растворителях сырого каучука. В. может быть ускорена добавлением небольших количеств органич. соединений ускорителей В. (см. Вулканизации ускорители). Многие ускорители являются эффективными только в присутствии активаторов — окислов металлов (напр., окиси цинка), действие к-рых проявляется в присутствии жирных к-т, образующих с окислами металлов соли, растворимые в каучуке. Таким образом, в состав вулканизующей группы обычно входит сера, ускоритель, активатор и к-та жирного ряда. Для предотвращения преждевременной В. в резиновую смесь вводят вулканизации замедлители. Ири термич. разложении вулканизующего агента или ускорителя, а также в результате реакций меноду ускорителями и серой образуются свободные радикалы, к-рые или присоединяются к двойным связям каучука, или отнимают атом водорода от а-метиленовой группы углеводородной цепи полимера. Свободный полимерный радикал взаимодействует с двойной связью соседней полимерной цепи, что приводит, т. о., к развитию полимериза-ционной цени, длина к-рой обычно мала. Свободный полимерный радикал может также взаимодействовать с друд ими радикалами и атомными группировками с образованием поперечных химич. связей между молекулами каучука. В зависимости от типа полимера и особенно от состава вулканизующей группы при В. образуются поперечные связи различного характера -—С—С— —С—8—С— —С—8 —С—. Состав, концентрация, распределение и энергия этих связей определяют многие важнейшие физико-механич. свойства вулканизатов. Так, если возникают преимущественно устойчивые поперечные связи (бессерная В., термовулканизация, радиационная В.), то это приводит к образованию резин, обладающих высокой стой- [c.337]

    Блоксополимеризация оказалась наиболее эффективным методом модифицирования свойств натурального каучука и синтетических полиизопре-новых и полибутадиеновых каучуков. Реакция легко ироходит во время пластикации смеси каучука с полимером а вальцах. При вальцевании смеси полимеров на охлаждаемых вальцах Б атмосфере азота происходит перетирание материала, сопровождающееся механической деструкцией его макромолекулярных цепей с образованием свободных радикалов, длительность существования которых достаточно велика. Большая продолжительность жизни этих радикалов обусловлена высокой вязкостью вальцуемой смеси, замедляющей взаимодействие макрорадикалов, и отсутствием в реакционной среде активного реагента — кислорода. По мере увеличения концентрации макрорадикалов возрастает вероятность их взаимного насыщения с образованием иовых полимерных цепей. В состав новых цепей входят блоки макромолекул обоих обрабатываемых компонентов. Таким методом получены, например, блоксополимеры натурального каучука или полиизопрена с хлоропреном, сочетающие свойства обоих полимеров. Блоксополимер может вулканизоваться серой, что характерно для полибутадиена и для натурального каучука. Б то же время блоксополимер может быть превращен [c.600]


Смотреть страницы где упоминается термин Полимеры и полимерные материалы каучук натуральный: [c.337]    [c.316]   
Термомеханический анализ полимеров (1979) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Натуральный каучук

Полимерные материалы



© 2025 chem21.info Реклама на сайте