Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные окисление

    Окисление парафина (спирты, жирные кислоты и др.) [c.26]

Рис. 95. Схема получения жирных кислот окислением парафина. Рис. 95. <a href="/info/1804571">Схема получения жирных кислот</a> окислением парафина.

    Средний выход отдельных фракций жирных кислот, образующихся в результате окисления парафинового гача, и их важнейшие свойства показаны в табл. 73. [c.164]

    Средний выход отдельных фракций жирных кислот, полученных окислением [c.164]

    Исследования по переработке высокомолекулярных парафиновых углеводородов (за исключением производства жирных кислот окислением парафинов) начались лишь сравнительно недавно. Стимулом для этих работ явилось главным образом стремление организовать производство мыл, сульфонатов, алкилсульфатов и других веществ, которые играют исключительно важную, но часто недооцениваемую роль в про мышленности моющих средств, эмульгаторов, вспомогательных мате риалов для текстильной промышленности, флотационных реагентов Это стремление диктовалось желанием отказаться от использо вания жиров в области промышленного органического синтеза с тем чтобы полностью направить их на производство пищевых про дуктов. [c.8]

    До настоящего времени, помимо нескольких установок окисления природного газа, окисление парафиновых углеводородов применялось )В промышленном масштабе главным образом при переработке твердого парафина для получения из этой смеси углеводородов жирных кислот, содержащих 20—25 углеродных атомов в молекуле. Окисление парафина сопровождается разрывом углеродных цепей с образованием жирных кислот различного молекулярного веса. Смеси сырых жирных кислот разделяют ректификацией на остаток и три широкие фракции  [c.10]

    Жирные кислоты для мыловарения могут с успехом заменить высшие насыщенные жирные кислоты животного и растительного происхождения. Неизбежное образование головного погона жирных кислот первоначально резко ухудшало экономику процесса окисления парафина, так как они не находили никакого применения. Однако в настоящее время на них имеется большой спрос, так как каталитическим гидрированием их можно превратить в первичные спирты, являющиеся важным полупродуктом для производства пластификаторов. [c.10]

    Нефтяной парафин представляет собой смесь углеводородов метанового ряда со значительным преобладанием молекул нормального строения. Мягкий парафин (температура плавления 40—42°) применяется главным образом в спичечной промышленности, для пропитки бумаги, в кожевенной и текстильной промышленности и т. д. Твердые парафины (температура плавления 50—52°) находят наиболее широкое применение в свечном производстве, а также для некоторых областей пропитки. Из процессов химической переработки парафинов в Германии наибольший интерес представляет производство жирных кислот на основе твердых парафинов (см. главу VI Окисление парафиновых углеводородов , стр. 432, или раздел Исходное сырье для процесса окисления парафина , стр. 444). [c.49]


    Кислоты с меньшим числом атомов углерода (Сц и ниже), так называемые головные погоны жирных кислот, образование которых вначале ставило под сомнение экономичность окисления парафина,уже несколько лет также находят себе очень ценное применение (подробнее описано ниже). [c.432]

    Энглер и Бок [34], тоже изучавшие окисление парафина воздухом, установили образование водорастворимых жирных кислот. [c.443]

    Требование, чтобы исходное парафиновое сырье выкипало в совершенно определенных пределах и тем самым имело бы определенный молекулярный вес и длину углеродной цепи, предполагает, что при окислении, как уже упоминалось раньше, образуются все теоретически возможные жирные кислоты. Все метиленовые группы различных угле- водородов окисляются с одинаковой степенью вероятности (см. также главу 9, стр. 586). Для того, чтобы получить максимальный выход кислот (С 2— 18), углеводороды исходного сырья ие должны иметь ии слишком короткую, ни слишком длинную цепь. Поэтому речь может идти [c.447]

    Может быть недостаточно часто указывалось, что при окислении высокомолекулярных парафиновых углеводородов начальное действие кислорода — образование гидроперекиси — не является селективным, т. е. что вначале образуется приблизительно эквимолярная смесь всех теоретически возможных жирных кислот. [c.448]

    В процессе окисления наряду с желаемыми кислотами образуются еще летучие соединения, которые удаляются с отходящими газами. Основные продукты окисления, не обладающие летучестью, состоят из высокомолекулярных жирных кислот, спиртов, кетонов, альдегидов, сложных эфиров, лактонов, эстолидов и т. д. Летучими продуктами, кроме углекислоты и воды, являются низшие жирные кислоты и их эфиры, альдегиды, спирты и перекиси они конденсируются при охлаждении и образуют водный и маслянистый слои. [c.449]

    Значительная часть образовавшихся жирных кислот при 170° подвергается дальнейшему окислению в непригодные для практики оксикислоты и их производные. В результате таких вторичных процессов окисления получается темный оксидат с большим содержанием веществ, не растворимых в петролейном эфире. По этой причине температуру окисления были вынуждены снизить до 105—120°. Однако, поскольку продолжительность окисления возрастает при этом до величины, не приемлемой с точки зрения экономики, для ускорения процесса должны были использовать катализаторы и обеспечить по возможности более хорошее соприкосновение воздуха с жидкостью. [c.450]

    Как только что упоминалось, в промышленности парафин окисляют почти исключительно по периодическому способу. Вследствие этого необходимо более подробно описать принципиальные особенности этого способа, пользуясь общей схемой производства жирных кислот из парафина окислением воздуха, изображенной на рис. 87. [c.453]

Рис. 87. Схема производства жирных кислот окислением парафина воздухом. Рис. 87. <a href="/info/63180">Схема производства</a> <a href="/info/1737084">жирных кислот окислением парафина</a> воздухом.
    При промывке воду добавляют в количестве 50 частей на 100 частей оксидата-сырца и нагревают до 80—90° при перемешивании. После отстаивания водный, окрашенный в желтоватый цвет слой спускают и промывку повторяют в тех же условиях. Вторые промывные воды почти бесцветные. При этом отмывается около 2—4% водорастворимых соединений, в основном низкомолекулярных жирных кислот, дикарбоновых кислот и веществ более высокой степени окисления, которые разлагаются при нагревании и окрашивают мыло в темный цвет. Эти вещества можно также отмывать разбавленной уксусной кислотой или спиртом. [c.456]

    Средние выходы отдельных фракций жирных кислот, при окислении парафинового гача [c.462]

    Синтетические жирные кислоты часто содержат 10—15 % продуктов высшей степени окисления, например дикарбоновых кислот, окси-и кетокислот. Их можно отделить количественно адсорбцией на сили- [c.463]

    Водный конденсат, называемый в технике также конденсаторной водой , образуется при охлаждении в трубчатых холодильниках отхо-.дящих газов процесса окисления парафинов. Получающийся при этом конденсат состоит из двух слоев верхнего, маслянистого, называемого также конденсаторное масло , и нижнего, упомянутого выше водного конденсата. Последний представляет 25—30%-ный раствор легколетучих низкомолекулярных жирных кислот, например муравьиной, уксусной, пропионовой и масляной, которые удерживают в растворе небольшое количество высших кислот. Вместе с ними присутствуют низкомолекулярные гидролизующиеся вещества, например лактоны, и, наконец, неомыляемые примеси в виде водорастворимых спиртов, альдегидов и кетонов. [c.469]


    Окисление парафина с целью получения жирных кислот получило большое развитие в Германии во время второй мировой войны. В качестве исходного материала здесь применяют или очищенный нефтяной парафин, или что дает более благоприятные результаты, буроугольпый нарафип (ТТН-процесс), или синтетический парафин, полученный процессом Фишера-Тропша. [c.162]

    Так как при окислении парафина кислород распределяется по всем метиленовым группам примерно равномерно, нри окислении получаются кислоты разного молекулярного веса, из которых нерегопкой отделяют кислоты, пригодные для мыловарения. Окисление проводят при возможно низких температурах порядка 105—120° [69]. Образующиеся жирные кислоты, особенно высокомолекулярные, окисляются далее, при этом образуются оксикислоты, кетокислоты и двухосновные жирные кислоты, не растворимые в бензине. Чтобы свести к минимуму образование этих нежелательных побочных продуктов, окисление ограничивают 30—50%-ным превращением всей окисляемой углеводородной смеси. В качестве катализатора применяют в большинстве случаев перманганат калия в количестве 0,3% вес. от всего парафина. Перманганат калия вводят нри перемешивании в нагретый до 150° парафин в виде концентрированного водного раствора, вода испаряется, а перманганат восстанавливается органическим веществом до двуокиси марганца, которая распределяется в реакционной смеси в исключительно тонко распыленном состоянии. Окисление ведут без применения давления. Важно, чтобы применяемый для окисления воздух поступал в парафин в возможно тонко распыленном состоянии. [c.162]

    Образование этих низкомолекулярных нитропарафияов первоначально объяснялось ХэссоМ и его сотрудниками [4] тем, что благодаря дальнейшему окислению нитросоединений по месту присоединения нитрогруппы образуется жирная кислота. Жирная кислота далее нитруется ло наиболее способному к реакции -положению, что приводит к образованию а-нитрокарбоновой кислоты, которая затем теряет углекислоту и переходит при этом в низкомолекулярный н итропарафлн /сравни синтез первичных питропарафинов по Кольбе)  [c.283]

    Здесь возникают приблизительно такие же явления, как и при хлорировании и сульфохлорировании, но лолинитросоединения подвергаются окислению и дальнейшему изменению этим объясняется образование углекислоты и жирных кислот, содержащих нитрогруппы. [c.306]

    Работы по окислению парафинов в Германии были направлен1з1 главным образом на создание методов окисления высших представителей насыщенных углеводородов, содержащих 20—25 атомов углерода. Если окисление этой группы предельных углеводородов проводить должным образом, получают жирные кислоты различного молекулярного веса, начиная практически с муравьиной кислоты и кончая кислотами с тем же числом атомов углерода, что и у исходного парафина. [c.432]

    Ниже подробно описывается окисление парафина в жирные кислоты, предназг1аченные для производства моющих средств, что позволяет сэкономить пищевое сырье. [c.443]

    Особыми преимуществами для окисления обладает парафиновое сырье, выделенное из продуктов синтеза по Фишеру—Тропшу, проводимого под средним давлением, поскольку оно в большей степени содержит углеводороды с прямой цепью, чем продукт, полученный при нормальном давлении. В результате жирные кислоты, в которые окисляют это сырье, имеют меньше примесей с разветвленной структурой, что очень важно, так как нежелательный, иногда резкий запах синтетического мыла главным образом зависит от присутствия кислот изостроения. Все же это сырье еще содержит до 15—20% углеводородов изостроения, тогда как в гаче, полученном при нормальном давлении, их находится 30—40 %. [c.445]

    Исследуя кислоты, полученные при окислении парафиновых углеводородов изостроения, можно составить представление о пунктах окислительной атаки кислорода. Последний действует преимущественно на точку разветвления, иначе говоря, на третичный атом водорода, В результате отщепления боковых цепей образуются в основном кислоты с прямой цепью. Тем не менее парафины с сильно разветвленным угле- родным скелетом продолжают оставаться непонгодными для промышленных целей сырьем [42], При их окислении получают главным обраэом низкомолекулярные и более глубоко окисленные карбоновые кислоты с числом атомов углерода меньше 12, не говоря уже о значительных количествах кислот с разветвленным скелетом. Эти кислоты обладают неприятным запахом и неудовлетворительным моющим действием. Технические нефтяные дистилляты, хотя и обогащенные парафинами, непригодны для получения жирных кислот, предназначенных для мыловарения, так как содержат нафтеновые и ароматические углеводороды, а также другие циклические соединения. [c.445]

    Хорошим сырьем для промышленного получения высших жирных кислот деструктивным окислением являются буроугольный и нефтяной парафины. Однако ресурсы буроугольного парафина слишком малы. Если даже весь этот парафин будет использован для производства жирных кислот, заметного удозлетворения потребности в них не произойдет. [c.445]

    На практике парафин окисляют при возможно более низкой температуре (около 105—120°). Образующиеся жирные кислоты также подвергаются окислению. С повышением степени превращения парафина (с углублением степени окисления) в продуктах реакции увеличиваются количество веществ, не растворимых в бензине (оксикислоты, дикарбоновые кислоты и т. д.), а также количество низкомолекулярных жирных кислот. В общем окисление доводят до содержания жирных кислот около 30—50%, чтобы по возможности избежать перевеса указанных побочных реакций. Аналогично поступают и при оцисанных ранее процессах замещения, когда требуется устранить слишком сильное образование продуктов дн- и полизамещения. [c.448]

    Это предположение (55] было подтверждено результатами опытов Цврнера [56] по дальнейшему окислению кислот естественных жиров [57]. Он установил, что кислород воздуха легко окисляет стеариновую кислоту с образованием низкомолекулярных жирных кислот, оксикислот, дикарбоновых кислот и двуокиси углерода. В тех же условиях лаурийовая кислота окисляется значительно меньше, а на капри-ловую кислоту, имеюшую 8 атомов углерода, воздух почти не действует. [c.449]

    Помимо воздуха, самого дешевого окислителя, в технике используют также окислы азота и азотную кислоту. Не. говоря уже о том, что эти ок)исл ители дороги, их юрименение приводит к повышению содержания дикарбоновых кислот в продуктах реакции. Правда, в последнее время разработан метод, по которому образование дикарбоновых кислот, а также образование азотсодержащих жирных кислот в сильной степени подавлено тем не менее этот метод окисления пока не внедрен в промышленность. [c.449]

    Марганец применяют вместе с щелочью в виде стеарата или солей жирных кислот, получающихся в само.м процессе. Наиболее простой и распространенной формой марганца является перманганат калия, которого расходуют около 0,3% от веса парафина [61]. Этим самым образование оксикислот сводится до минимума [62]. Оптимальное количество щелочи соответствует 0,05% NaaO, поэтому достаточно даже того незначительного количества мыла, которое вносится в реактор для окисления вместе с обратным парафином. [c.450]

    В Виттене, на заводе Дойче Феттзойреверке , где во время войны ежегодно производили 40 ООО т синтетических жирных кислот, иэ которых 150 т шло ежемесячно для получения синтетического пищевого жира, окисление проводили в алюминиевых колоннах емкостью до 20 т. Верхняя часть этой колонны (головная часть) была изготовлена из легированной стали и была устойчива таким образом к коррозии, которая в противном случае под действием летучих жирных кислот происходила бы очень сильно. [c.453]

    Высшие жирные кислоты окрашены в темный цвет, их натровые соли пенятся хуже. Из них можно получить фракционировкой продукт, весьма похожий на стеариновую кислоту. Выше 320° особенно при длительной перегонке наступает разложение с отщеплением двуокиси углерода, в результате чего в дистилляте снова появляются неомыляемые . Кубовый остаток, количество которого достигает 10—20% в зависимости от исходного парафина и от глубины окисления, переводят в медный куб обогреваемый газом, и перегоняют с водяным паром при 10 Л1жрт. ст.. Когда температура кубовой жидкости дойдет до 350°, перегонку прекращают. [c.461]

    Как было уже сказано, выходы овделъных фракций зависят от способа окисления, температур выкипания исходного парафина, глубины окисления и т. д. В табл. 122 приведены результаты разгонки, проводившейся в промышленном масштабе на заводе Дойче Феттзоире-верке . Исходным сырьем для, окисления служил главным образом синтетический парафиновый гач. Общий выход жирных кислот составлял около 80% в расчете на превращенный парафин. Около 15% терялось уже в процессе окисления в виде двуокиси и окиси углерода и растворимых в воде продуктов окисления 1—2% терялось при перегонке. [c.461]

    В табл. 124 приведены средние выходы отдельных фракций жирных кислот вместе с их характеристиками, полученных при эксплуатации во время войны установки по окислению парафинового гача на заводе Дойче Феттзойреверке в Виттене. [c.462]

    Так, например, Янтцен с сотрудниками [45] нашел путем тщательной ректификации смеси метиловых эфиров жирных кислот, полученных окислением парафинового гача, следующее содержание индивидуальных кислот (табл. 125). [c.463]

    Жирные кислоты с 10—20 атомами углерода, представляюпше основной продукт окисления парафина, вполне пригодны для производства мыла. Специфичный запах полученного на их основе мыла, вызванный присутствием жирных кислот изостроения и незначительных количеств окси- и кетокислот, может быть в сильной степени замаскирован прибавлением подходящей отдушки. Восстановление жирных кислот (Сю—С20) в спирты дает возможность получить сырье для производства алкилсульфатов, которые по своему поверхностно-активному и очищающему действию не уступают алкилсульфатам, изготовленным на основе коксового мыла. [c.463]

    Жирные кислоты изостроения, присутствующие в продуктах окисления парафина, уже значительно труднее выделить в чистом виде. При фракционировании метиловых эфиров жирных кислот, которые были предварительно освобождены от других кислородных соединений, кислоты изостроения накапливаются в цромежуточных фракциях. Омылением и многократной перекристаллизацией можно выделить чистые кислоты (Б. Вайс). Они обладают неприятным запахом и присутствуют в значительных количествах в жирных кислотах, полученных окислением парафина ТТН и парафина Рибек, их содержится приблизительно 12%, а в кислотах, имеющих своим источником синтетический парафиновый гач, их значительно больше (до 30%). Можно с достаточной вероятностью установить присутствие в структуре этих кислот метильных групп в и у-положениях, и возможно, что они имеются также в других положениях (Б. Вайс, Г. Мелап). В головных погонах жирных кислот также установлено наличие кислот изострое-ния. Кислоты, не обработанные силикагелем, содержат дикарбоновые кислоты с 9—16 атомами углерода (Бем).  [c.464]

    Лангенбек и Притцков [81] установили факт, не согласующийся со схемой Рихе. Они нашли, что первичные спирты в условиях, при которых проводят окисление парафинов, окисляются преимущественно не в гомологичные жирные кислоты, а по метиленовым и метильным группам углеродного скелета, что приводит к образованию карбоновых кислот и оксикислот. [c.466]

    Образовапие гидроперекисей подавляется фенолами и аминами и инициируется ультрафиолетовыми лучами и перекисями. Соли марганца сильно ускоряют реакцию. Следовательно, перекиси являются инициаторами, а соли марганца — катализаторами окисления парафинов. Если обработать смесь высших жирных спиртов (средний молекулярный вес 220, что отвечает Сн-спиртам) воздухом при 120° с добавкой стеарата марганца в условиях, при которых проводят окисление пара-ф,инов, то реакция становится заметной только через 3—5 час. инкубационного периода. Если предварительно добавить 0,0025% мол. перекиси бензоила, то кислород начинает поглощаться сразу, даже без добавки стеарата марганца. Это означает, что, по-видимому, присутствуют вещества, противодействующие образованию радикалов, которые должны разрушаться окислением прежде, чем сможет начаться неини-циируемая реакция. Такие вепсества известны, они были проверены в обширных исследованиях Крегера и Каллера [87]. Однако скорость всего процесса продолжает оставаться меньшей, чем в присутствии марганца. Если одновременно прибавить и перекиси и стеарат марганца, то реакция начинается сразу же и протекает быстро. [c.468]

    На каждые 100 весовых частей окисленного нарафина получают около 3—5%, а иногда и больше маслянистого конденсата. Последний содержит до 40—50% неомыляемых . После удаления описанным выше двухстадийным методом неомыляемых ( неомыляемые 1 и неомыляемые 2 ) в остатке будет около 50% жирных кислот, которые в свою очередь СОСТОЯТ из 25% кислот —С5 И 75% и-слот Се—Сц наряду с небольшим количеством окси- и кетокислот. [c.470]


Смотреть страницы где упоминается термин Жирные окисление: [c.22]    [c.166]    [c.270]    [c.9]    [c.444]    [c.449]    [c.454]    [c.455]   
Общая микробиология (1987) -- [ c.424 ]




ПОИСК







© 2025 chem21.info Реклама на сайте