Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен в системах моделирование

    В системе моделирования ректификационных колонн для характеристики движения пара в массообменном пространстве принята модель вытеснения, а для движения жидкости — модели смешения, вытеснения и комбинированные модели [39, 47]. [c.127]

    Для повышения масштаба простых единичных процессов, таких как транспортирование материалов, массообмен или разделение веществ, можно пользоваться расчетными методами. Однако во многих случаях, когда применяются аппараты новых типов, сложные многофазные системы или вещества с недостаточно исследованными физико-химическими свойствами, приходится использовать моделирование как более точный метод масштабирования. [c.446]


    Для сравнительно простых систем, таких, как гидравлические или тепловые с однофазным потоком, принцип подобия и физическое моделирование оправдывают себя, оперируя ограниченным числом критериев. Для сложных систем и процессов, описываемых сложной системой уравнений с большим набором критериев подобия, которые становятся, одновременно несовместимыми, использование принципов физического моделирования наталкивается на трудности принципиального характера. Они заключаются в том, что не существует уравнений движения двухфазных потоков общего вида, отсутствует возможность задать граничные условия на нестационарной поверхности раздела фаз. Тем более не представляется возможным написать уравнения общего вида для двухфазной системы, осложненные массообменом. [c.131]

    Физическое моделирование. Основой рассматриваемого вида моделирования служит теория подобия, которая устанавливает условия подобия модели и, оригинала, дает возможность обобщать единичные эксперименты в безразмерных критериях и распространят найденные зависимости на подобные системы. Теория подобия и физическое моделирование получили большое развитие в СССР и хорошо известны инженерам-технологам. Эти методы успешно применяют при изучении, разработке и проектировании тепловых-и массообменны 4 аппаратов, а также гидродинамических устройств. [c.461]

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]


    Четвертый выпуск сборника содержит краткие сообщения о научно-исследовательских работах, выполненных в СССР в 1967 г. в области массообменных процессов химической технологии. Эти работы посвящены общим вопросам теории массопередачи, кинетике массообмена отдельных технологических процессов в системах газ — жидкость и жидкость — жидкость (абсорбция, ректификация, молекулярная дистилляция, дистилляция в токе водяного пара, жидкостная экстракция), газ — твердая фаза и жидкость — твердая фаза (сушка, адсорбция, ионообмен, экстрагирование, кристаллизация), а также кинетике процессов, осложненных химическими реакциями. В отдельной главе рассмотрены методы расчета оптимизации и моделирования массообменных процессов. [c.2]

    При моделировании процесса ректификации с использованием механизма массопередачи единственным практически применяемым в настоящее время методом является метод потарелочного расчета в направлении от куба к дефлегматору по всей колонне. Обратное направление счета связано с необходимостью решения для каждой тарелки системы трансцендентных уравнений, что обусловлено структурой уравнений, описывающих массообмен на тарелке (см. табл. У-1, модели 1, 2, 4). Для обеспечения устойчивости схемы счета в одном направлении разработаны эффективные алгоритмы, не требующие существенного увеличения памяти машины и в некоторых случаях даже сокращающие общее время решения. [c.262]

    Предложенный метод оценки взаимного влияния элементов системы ДУ — сливная тарелка на гидродинамическую обстановку массообменной ступени позволяет более обоснованно подойти к вопросу моделирования роторных ректификационных колонн. [c.56]

    Для определения основных размеров химических реакторов необходимо иметь полное математическое описание (полную знаковую модель) в виде системы дифференциальных уравнений материальных балансов для компонентов реакционной смеси и дифференциального уравнения теплового баланса, учитывающих гидродинамическую структуру потока, а также кинетические уравнения теплообмена, массообмена и химических реакций. Вследствие сложности математического описания [16, 54] математическое моделирование большинства нефтехимических объектов проводят, применяя упрощающие допущения. С другой стороны, полное физическое моделирование работы реакторов с целью использования данных, полученных на лабораторной модели для проектирования промышленного реактора, практически невозможно из-за необходимости обеспечения одновременного равенства большого числа критериев гидродинамического, теплового, массообменного и химического подобия. Последнее требование оказывается невыполнимым вследствие несовместимости некоторых критериев подобия. [c.167]

    В предлагаемой книге при формулировании задач физико-математического описания конкретных массообменных процессов существенное влияние уделяется вопросам физического анализа, лоскольку при широком использовании методов математического моделирования адекватность исходной системы уравнений реальному процессу имеет первостепенное значение. При анализе всех рассматриваемых процессов основное внимание уделяется вопросам кинетики, а равновесные и балансовые соотношения используются в пределах необходимой их связи с кинетикой. [c.5]

    От теории элементарных актов межфаэного обмена переходят к статистич. описанию реальных систем, в к-рых происходит множество элементарных актов, взаимно влияющих друг на друга. Изучают, напр., межфазный массообмен в условиях стесненного, т. е. ограниченного стенками сосуда, движения капель и пузырей гетерог. хим. превращ. в проточных реакторах с неподвижным или псевдоожиженным слоем катализатора во внешнедиффузионном режиме (см. Макрокинетика) адсорбцию и поветхноствую диффуз эию в пористых средах. Важную роль в Ф.-х. г. играет эксперим. Моделирование как элементарных актов межфаз-нога обмена, так и их взаимод. в реальных системах. [c.619]

    При изучении параметров массообменного режима работы ванны применяют гидравлическое моделирование протекающих в ней процессов, так как аналогичные исследования на реальных объектах сопряжены со значительными трудностями, и в ряде случаев практически невыполнимы. Исследования, как правило, проводят на холодных моделях, заполненных жидкостью, имитирующей шлак-штейновый расплав. Свойства жидкости и вдуваемого в нее газа характеризуют значениями их плотности и р. В безразмерной форме они представлены соотношениями и (учитывая действие Архимедовых сил) Ар/р ., где Ар = р - р . В качестве характерных размеров надфурменной зоны ванны используют диаметр фурмы и высоту невозмущенной жидкости над срезом ее сопла h , образующие безразмерную переменную параметрического типа Я= hjd . Динамическими параметрами системы являются расход дутья К и его скорость на выходе из фурмы Wg. В относительной форме их представляют, соответственно, в виде удельного расхода газа (газовой нафузки) v = F/F , (где — площадь поперечного сечения ванны) и критерия Фруда Рг = w /gd . [c.463]


    Подавляющее большинство методик, предложенных для моделирования массообменных процессов в двухфазных газопарожидкостных системах, используют либо понятие теоретической ступени разделения (т. е. такого контактного устройства, в котором достигается межфазное равновесие), либо понятие ступени разделения с заданной (нормализованной) эффективностью разделения. Объясняется, это, с одной стороны, значительной сложностью моделей, использующих кинетические характеристики процессов массо- и теплообмена, а с другой стороны, недостаточной изученностью кинетики процессов тепло- и массопереноса в контактных устройствах различного типа. Разумеется, моделирование без учета кинетики процесса также дает полезную информацию об объекте. На его основе можно сравнить различные схемы процесса и выбрать оптимальный вариант, определить основные параметры потоков на выходе моделируемого объекта. Однако сопоставить различные конструкции массообменных устройств, наметить пути интенсификации процесса, верно определить размеры аппарата и энергозатраты на проведение процесса можно только с учетом кинетических характеристик контактных устройств и связей эти характеристик с гидродинамическими и физико-химическими параметрами процесса. [c.154]


Смотреть страницы где упоминается термин Массообмен в системах моделирование: [c.110]    [c.133]    [c.148]    [c.163]   
Перемешивание в химической промышленности (1963) -- [ c.268 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Кольцова Э.М., Гордеев Л.С. Исследование и математическое моделирование неравновесных массообменных процессов в многокомпонентных системах методами синергетики. (РХТУ)

Массообмен

Массообмен в системах



© 2025 chem21.info Реклама на сайте