Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен межфазный

    Математические модели ректификационных колонн, основанные на замене реальных тарелок теоретическими ступенями разделения, получили широкое распространение в практике проектных расчетов, поскольку позволяют вести расчет колонны без учета гидродинамической обстановки на тарелках. По существу эти модели (см. табл. 14, модели 3, 5 и 6) представляют собой попытку замены описания ректификационной колонны описанием аппарата с полной конденсацией пара на ступенях разделения. До некоторой степени это отражает свойства процесса ректификации, поскольку взаимодействие паровой и жидкой фаз, имеющих различные температуры, сопровождается явлениями конденсации. Вместе с тем такая замена, по существу, игнорирует межфазный массообмен, который также влияет на работу ректификационной колонны. [c.302]


    В случае гетерогенных реакций, при проведении которых на ход процесса влияет массообмен через межфазную поверхность, достижение одинаковых скоростей реакции требует дополнительного соблюдения равенства межфазной поверхности, рассчитанной на единицу объема реакционной системы. При разборе масштабирования аппаратов с мешалками было показано, что для выполнения этого условия необходимо сохранить геометрическое подобие аппаратов и равенство расхода мощности на перемешивание в расчете на единицу объема системы. При этих предположениях трудно соответствующим образом повысить интенсивность теплообмена в образце и практически возможен некоторый отход от геометрического подобия с целью увеличения поверхности теплообмена в аппарате большего масштаба. - [c.472]

    Если массообмен в установившемся режиме происходит между двумя фазами, например газовой и жидкой, то количество массы, которое проникло через межфазную поверхность из газовой фазы, должно быть равно количеству массы, перешедшему в жидкую фазу, т. е. [c.246]

    Направление движения растворенного вещества В (например, от капли к сплошной фазе или наоборот, от жидкости А к жидкости С или наоборот). При рассмотрении этого вопроса необходимо принять во внимание явление межфазной турбулентности, которое ускоряет массообмен, а также изменение поверхностного натяжения. Межфазная турбулентность появляется при экстракции из капли в сплошную фазу при высоких концентрациях, поэтому в случае ее появления следует ожидать, что это направление будет преобладать. Данному явлению может препятствовать [c.310]

    Насадочные колонны для массообменных процессов между газом и жидкостью чаще всего работают в пленочном режиме. Максимальная межфазная поверхность в этом случае равна поверхности элементов насадки, однако в действительности она обычно меньше по следующим причинам. Во-первых, часть поверхности насадки может быть не смочена жидкостью. Во-вторых, часть жидкой фазы внутри насадки пребывает в аппарате длительное время и вследствие этого находится в равновесии с газом. Межфазную поверхность, образованную этой застойной жидкостью, называют статической. В процессах абсорбции, десорбции, ректификации она является неактивной эффективная удельная поверхность контакта фаз равна разности между смоченной и статической поверхностью насадки а = —Сст- [c.50]

    Искомыми величинами при расчете массообменных колонн являются их диаметр и рабочая высота. Диаметр колонны определяется объемной скоростью потоков фаз, а для расчета ее высоты необходимо совместно решить уравнения скорости (Процесса массопередачи и материального баланса. Эти ура внения применительно к межфазному обмену одним компонентом (однокомпонентная [c.206]


    Выше были перечислены пять групп факторов, которые оказывают влияние на работу гетерогенного реактора. (Очевидно, что скорость и направление процессов каждой из групп зависит от скорости п направления всех остальных процессов. Однако наиболее типичной для химического реактора является взаимосвязь химических и массообменных процессов. Для того чтобы наглядно показать тесную связь химического взаимодействия и процессов межфазного переноса в гетерогенных реакторах для систем жидкость — жидкость пли жидкость — газ, рассмотрим простейшую реакцию первого порядка по переходящему компоненту в изотермическом реакторе идеального (полного) вытеснения. [c.13]

    При проектировании реакторов описываемого типа следует иметь в виду, что характер газового потока и размер пузырьков зависят от скорости потока, определяющей величину межфазной поверхности. Процессы, в которых большую роль играет массообмен, следует проводить при турбулентном режиме верхней границей служит скорость, при которой начинают образовываться газовые пробки. Размеры пузырьков зависят от свойств жидкости — ее вязкости, плотности, поверхностного натяжения и т. д. Высота столба жидкости, зависящая от степени насыщения ее пузырьками газа, также влияет на работу аппарата. [c.360]

    На модельных системах (чаще всего атмосферный воздух — вода — стеклянные шарики) были достаточно полно изучены основные характеристики газожидкостного псевдоожижения движение газа и жидкости, расширение слоя, массообмен на межфазной поверхности жидкость — газ. Результаты этих исследований рассмотрены ниже. В заключение будут затронуты некоторые другие проблемы, связанные с газожидкостным псевдоожижением. [c.659]

    Существенные различия между скрубберами с орошаемой неподвижной насадкой и контактными аппаратами с турбулентным трехфазным псевдоожиженным слоем были отмечены Ченом и Дугласом Задержка жидкости в слое неподвижной насадки слагается из динамической и статической составляющих, причем последняя играет весьма ограниченную роль в процессах межфазного переноса. В то же время, в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем статическая задержка жидкости практически отсутствует вследствие движения насадки и, таким образом, вся удерживаемая жидкость принимает участие в массообмене между фазами. Этим, в частности, можно объяснить тот факт, что при одинаковых условиях работы скорости тенло-массопереноса в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем выше, чем в абсорберах с неподвижной насадкой .  [c.677]

    При жидкостной экстракции, кроме чисто физических явлений, какими являются оба вида диффузии и спонтанная турбулентность, могут происходить также и химические реакции между растворенными молекулами и компонентами растворителя или только между первыми. Реакции могут проходить либо в фазе растворителя—и тогда они имеют гомогенный характер, либо на поверхности контакта фаз, как свободно идущие реакции гомогенного характера. Химические реакции оказывают большое влияние на скорость перехода молекул целевого компонента, и в зависимости от характера они могут ускорять массообмен (гомогенные реакции) или заменять его (гетерогенные реакции) вследствие появления дополнительных сопротивлений на межфазной поверхности. [c.62]

    Тип насадки и внутреннее устройство колонн ы. Применение насадки и внутренних конструкций, как правило, улучшает массообмен, так как увеличивает турбулентность фаз и удерживающую способность (межфазная поверхность в колонне). Этот параметр определяется обычно размерами насадки, например диаметром колец Рашига, величиной отверстий и расстоянием между перегородками и т. д. Влияние насадки и внутренних устройств будет детально рассмотрено в 33. [c.310]

    Однако кипящий слой обладает и рядом недостатков. Наиболее важным из них является неоднородность слоя. Значительная часть потока газа проходит сквозь него в виде газовых пузырей и струй, составляющих как бы особую фазу, в которой отсутствуют химические превращения. Диффузия реагентов из пузырей в промежутки между твердыми частицами затруднена, вследствие чего возникает дополнительное — межфазное — сопротивление массообмену между потоком газа и поверхностью катализатора. [c.269]

    Алгоритм расчета многокомпонентного равновесия также можно причислить к алгоритмам преобразования данных. В настоящее время многокомпонентное равновесие рассчитывается обычно на основе бинарных равновесных данных, при этом накладываются очень жесткие ограничения на время расчета, поскольку по специфике проектирования массообменных процессов расчет межфазного равновесия является одним из наиболее интенсивно используемых алгоритмов. В связи с этим следует отметить работы [38, 39 , в которых предложены методы расчета многокомпонентного равновесия, значительно экономящие время. [c.230]


    Для многокомпонентных смесей межфазный массообмен определяется матрицей общих коэффициентов массопередачи [Коу, которая определяется через матрицы частных коэффициентов массоотдачи по формуле [c.293]

    Общая характеристика газожидкостных реакторов. Возможны два варианта газожидкостных реакций либо газ реагирует непосредственно с жидкостью, либо реагирующие вещества находятся в газовой фазе, а жидкость является катализатором. Во втором случае реакция протекает либо в объеме жидкого катализатора, либо на его поверхности. В качестве примеров газожидкостных реакций можно привести производство уксусного альдегида гидратацией ацетилена, алкилирование бензола пропиленом, окисление изопропилбензола кислородом воздуха. Главные требования к газожидкостным реакторам — создание условий для их межфазного контакта и оптимального теплового режима процесса, так как газожидкостные реакции всегда сопровождаются межфазным массообменом, а скорость их зависит от температуры. [c.270]

    Другая группа моделей (см. табл. 14, модели 1, 2, 4), напротив, не учитывает процессы конденсации или испарения в качестве основных актов разделения, представляя межфазный массообмен как результат только диффузионной передачи вещества. Естественно, что и этот подход не может быть признан в качестве единственно правильного метода моделирования процесса разделения. Однако при этом учитываются гидродинамические условия на тарелках и, кроме того, оказывается возможным установление однозначного соотношения между тарелками реального аппарата и их представлением в модели. [c.302]

    Характер движения жидкости на тарелке оказывает существенное влияние на условия массообмена, поэтому при оценке разделительной способности обычно учитывают гидродинамическую структуру потоков. При этом исходят из понятия локальных характеристик явления массообмена в элементарном объеме с однородной гидродинамической структурой, распространяя последние на все массообменное пространство. Выражения (2-61) и (2-62) как раз и используются для локальной скорости массопередачи. Следует заметить, что в этих выражениях скорость массопередачи отнесена к единице поверхности раздела фаз. Однако практическое определение последней сопряжено со значительными трудностями, и поэтому в большинстве случаев используется понятие объемного коэффициента массопередачи, т. е. произведение коэффициента массопередачи на величину поверхности межфазного контакта, приходящуюся на единицу объема массообменного пространства. [c.127]

    Оценим влияние взаимодействия кристаллов в стесненном движении на межфазный массообмен. [c.127]

    Рассмотрим влияние взаимодействия кристаллов (стесненности) на межфазный массообмен для двух крайних случаев Ре<1, Ре>1 (Ре —число Пекле). В первом случае пренебрегаем конвективной диффузией (гидродинамика не оказывает влияния на [c.128]

    Важную роль в технологических процессах играет, как известно, явление массопереноса, т. е. явление переноса массы вещества между двумя фазами. Существует несколько теорий процесса массопереноса через межфазную поверхность. Наибольшее распространение получила пленочно-пенетрационная теория, которая утверждает, что имеет место двойственный механизм диффузии. При малом времени контакта массообмен протекает как ряд неустановившихся процессов диффузии компонента от межфазной поверхности к элементарным вихрям сплошной фазы, соприкасающимся с поверхностью и проникающим в глубь сплошной фазы. При более длительном времени контакта действует механизм молекулярной диффузии через ламинарные пограничные пленки по обе стороны раздела фаз. [c.30]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]

    Стремление к увеличению геометрической поверхности раздела фаз отнюдь не всегда приводит к ожидаемому ускорению массообменного процесса. Важно не просто развить большую геометрическую поверхность, а достичь увеличения активной межфазной поверхности. Наиболее простой путь к этой цели — дальнейшая турбулизация пенного слоя путем его завихрения, например, помещение в него завихряющих устройств, создание вибрации слоя, пульсирующего газового потока и т. п. -.  [c.78]

    Уравнения теплопередачи в пенном слое. Известные уравнения, характеризующие тепло- и массообмен в двухфазной системе Ж—Г (в том числе в пенном слое), позволяют определить коэффициенты межфазного переноса (см. табл. 11.1). [c.89]

    Решение. Аппарат с орошаемой взвешенной насадкой представляет собой цилиндрическую колонну с одной или несколькими перфорированными, щелевыми или прутковыми решетками и расположенными на них слоями насадки из полых шаров. При подаче газа под нижнюю решетку в результате взаимодействия потоков газа и жидкости с насадкой образуется турбулизованная газожидкостная смесь с развитой межфазной поверхностью. В зависимости от скорости газа в аппаратах ВН различают три основных гидродинамических режима — стационарное состояние насадки, начальное и развитое взвешивание. Оптимальным для осуществления массообменных процессов является режим развитого взвешивания насадки. [c.187]

    Смесеобразование может быть частично или полностью предварительным. Оно может быть в гомогенной или гетерогенной среде может происходить с материалами, находящимися в твердом, жидком или газообразном состоянии. От всего этого зависит возможное развитие межфазной поверхности, величина которой при гетерогенных условиях определяет быстроту химического процесса и, стало быть, темп работы и производительность печи-теплогенератора с массообменным режимом. [c.49]

    Влияние рециркуляции. Одним из эффективных способов повышения четкости разделения масляных компонентов является возбуждение или ввод рециркулята в экстракционную колонЕту, В результате нарушения при этом межфазного равновесия усиливаются массообменные переходы из одной фазы в другую из экстрактного раствора выделяЕотся высокоиндексные компоненты как наименее растворимые в данном растворителе, увеличивая выход рафината из рафинатного раствора переходят в экстрактный ком — гоненты с более низким индексом вязкости, что приводит к повы — [c.242]

    Технологическая (или рабочая) машина представляет собой комплекс механизмов, предназначенных для выполнения технологического процесса в соответствии с заданной программой. В ходе техно-логиче кого процесса под воздействием рабочих органов машины изменяются качественные показатели предмета труда (физические свойства, форма, положение) при этом затрачивается полезная работа В машинах химических производств технологический процесс обычно носит сложный характер на предмет труда помимо M xaim ческого воздействия может накладываться какой-либо (или совокупность) типовой процесс химической технологии — химическое превращение, межфазный массообмен, нагрев, изменение агрегапного (фазового) состояния вещества и др. Например, в аммо-низаторах-грануляторах происходит не только процесс гранулирования окатыванием, т. е. получение сферических гранул из мелкодисперсного материала перемещением его частиц во вращающемся барабане, но и химическая реакция — нейтрализация жидким аммиаком фосфорной кислоты, содержащейся в пульпе, которая подается в гранулятор, а также сушка материала (тепломассообменный процесс). [c.7]

    Межфазная поверхность, через которую происходит массообмен между жидкостью и газом, велика и составляет около 1500 лl /лi газа при среднем диаметре лузырька 4 лш. Линейная скорость, пересчитанная на незаполненное сечение, должна находиться в пределах 1—30 см/сек. Размер частиц катализатора может меняться в интервале от 1 до 100 м. [c.361]

    Автору, очевидно, остались неизвестными многочисленные работы по гидродинамике и массообменной способности аппаратов с турбулентным трехфазным псевдоожиженным слоем, опубликованные на протяжении последних 6—8 лет советскими и зар жными исследователями. Это, естественно, значительно сузило объем информации по рассматриваемому вопросу, изложенной в данной главе. С целью восполнения этого пробела мы приводим список наиболее важных опубликованных работ [8-22]. В последних содержится достаточно обширная информация по ряду аспектов рассматриваемого процесса режимы трехфазного псевдоожижения начало полного ожижения и его зависимость от скоростей потоков ожижающих агентов, их физических свойств, а также от размеров и эффективной плотности элементов насадки динамическая высота слоя и газосодержание перепад давления в слое пределы существования трехфазного псевдоожиженного слоя интенсивность циркуляции элементов насадки в слое величина межфазной поверхности продольное перемешивание массообменная способность аппаратов с трехфазным псевдоожиженным слоем в процессах физн- -ческой абсорбции, хемосорбции и ректификации бинарных Жидких смесей. [c.675]

    Поскольку в аппаратах с твердым катализатором реакция идет на поверхностп последнего, то перенос массы на границе фаз протекает в отсутствие химической реакции. Поэтому для определения значений коэффициентов межфазного переноса в аппаратах с суспендированным катализатором, где велика доля жидкой фазы, инертной в отношении химической реакции, можно пользоваться формулами, принятыми для расчета массообменных аппаратов, например приведенными в монографии [30]. Для неподвижного слоя катализатора за неимением более точных и обоснованных выражений в первом приближении, видимо, можно к значениям коэффициентов переноса,рассчитанным без учета химической реакции, вводить поправочные коэффициенты, учитывающие этот последний фактор аналогично тому, как это делается, например, в работах [31] и [32]. [c.306]

    Как видно из (1.63), (1.64), по сравнению с перекрестными эффектами, развивающимися в однофазных системах [42] (например, эффекты Соре, Дюфура и др.), в случае многофазных многокомпонентных систем (с химическими реакциями, фазовыми превращениями, тепло- и массообменом), подчиняющихся модели взаимопроникающих континуумов, спектр перекрестных эффектов значительно расширяется. Так, на величину диффузионных и тепловых потоков в пределах фазы оказывает влияние относительное движение фаз (коэффициенты ап зи > / 2п+зд)- Поток тепла 5,12) между фазами определяется не только разностью температур фаз, но и движущими силами межфазного переноса массы (коэффициенты i,2jv+2.....2Л42П+1) и химических превращений (коэффициенты, 121 > 2jv+i). Скорость транспорта вещества к-то компонента между фазами определяется прежде всего движущей силой межфазного массопереноса, состоящей из трех частей разности потенциалов Планка (V-ik [c.59]

    На основе предположения о том, что динамика процессов в реакторе с неподвижным слое катализатора описывается математической моделью, учитывающей теплопроводность слоя катализатора, конвективный поток газа, межфазный тепло- и массообмен и химическую реакцию, изучается явление распространения теплового фронта. При некоторых естественных предположениях относительно зависимости скорости химическй реакции от температуры и состава реакционной смеси доказывается существование я единственность решения соответствующих уравнений в виде бегущей волны. Определяются условия существования стоячей волны. Нрицодятся оценки основных характеристик теплового фронта максимальной температуры, скорости распространения и ширины реакционной зоны. [c.167]

    В различного рода массообменных аппаратах с тарелками, позволяющих пропускать газ пузырьками Или струями чербз слой жидкости, процесс диффузионного обмена происходит при разных условиях соприкосновения газа и жидкости. Независимо от конструкции тарелки пространство над ней можно разделить на три зоны. Нижняя зона — зона барботажа — представляет собой сплоншой слой жидкости, пронизанный пузырьками газа. Над ней находится зона пены, а еще выше — зона брызг. При малых скоростях газа, которые обычно поддерживаются в барботажных аппаратах, основная масса жидкости находится в зоне барботажа и количество пены и брызг невелико. Между тем, диффузия массы и теплообмен идут наиболее интенсивно именно в слое пены, обладающей большой межфазной поверхностью, непрерывно и быстро обновля1ющейся. Даже при малой высоте пенного слоя по сравнению с высотой зоны барботажа он имеет превалирующее значение. Следовательно, увеличением слоя пены за счет уменьшения слоя барботажа можно резко интенсифицировать процесс. Увеличение слоя пены может быть достигнуто повышением скорости газа в полном сечении агшарата Шг, являющейся наиболее влиятельным параметром [173, 231, 307], определяющим характер гидродинамического режима газожидкостного слоя (см., например, [223, 297, 348, 389]). , — [c.29]

    Приведенные уравнения для расчета объемных коэффициентов массоотдачи справедливы при определенных гидродинамичееких режимах. Из-за многообразия предложенных классификаций гидродинамических режимов и пределов их существования, вызванного различием визуальной оценки структуры газожидкостного слоя, практическое применение указанных уравнений затруднено. Уравнения для определения коэффициентов массоотдачи, отнесенных к единице межфазной поверхности [66, 267, 373], также имеют расхождения в части влияния определяющих гидродинамических параметров. Это вызвано различным подходом к оценке поверхности контакта фаз. Определяющим размером для критериев Nu и Re в некоторых уравнениях [210, 262, 291] служит не имеющий реального выражения средний диаметр пузырька Для учета влияния структуры газожидкостного слоя и циркуляции газа некоторые авторы [9, 217, 291] вводят в критериальное уравнение симплекс djdn,, в котором принимают п. = 4 мм, считая, что при таком размере пузырька в нем не происходит циркуляции газа и дальнейшее уменьшение размера пузырька не влияет на массообмен. [c.125]

    Для протекания газожидкостной реакции необходим контакт газа и жидкости. В большинстве случаев реакция протекает в жидкой фазе, в которую должен вводиться реагирующий компонент газовой смеси поэтому газожидкостные реакции всегда сопровождаются межфазным массообменом. В некоторых случаях одни стадии процесса протекают в жидкой фазе, другие — в газовой, например в производстве азотной кислоты. В абсорбционно-окислительной колонне происходит следующая цепочка процессов абаорбция диоксида азота жидкостью, реакция диоксида азота с водой с образованием азотной и азотистой кислот, разложение азотистой кислоты с образованием моноксида азота, десорбция моцоксида азота в газовую фазу, окисление моноксида азота в диоксид. Здесь окисление моноксида азота происходит в газовой фазе, остальные реакции — в жидкой необходимые стадии процесса также абсорбция и десорбция. Все эти процессы проводят одновременно в одном аппарате. [c.269]

    Удельная межфазная поверхность полидгсперсной системы газовых пузырей определяется свойствами жидкости и газа и их приведенными скоростями и не зависит от конструкции барботера. Влияние последней на газосодержание, а следовательно, и на удельную поверхность контакта фаз проявляется только при малых высотах барботажного слоя, например на ситчатых тарелках массообменных аппаратов, где высота расширяющейся струи газа соизмерима с общей высотой слоя динамической пены. Влияние свойств газа и жидкости на величину а при массовом барботаже очень сложно, доказательством чего могут, например, служить результаты исследований удельной межфазной поверхности в бар-ботажном реакторе, секционированном ситчатыми тарелками [14]. Эти опыты показали, что при приблизительно одинаковых физических свойствах жидкостей (вязкости, поверхностном натяжении и плотности) величина а для растворов электролитов оказалась значительно выше, чем для недиссоциированных жидкостей. Различие значений а наблюдалось и для разных растворов электролитов при постоянстве указанных физических свойств жидкостей. [c.19]


Смотреть страницы где упоминается термин Массообмен межфазный: [c.244]    [c.206]    [c.673]    [c.61]    [c.293]    [c.142]    [c.179]    [c.270]    [c.272]    [c.131]   
Промышленное псевдоожижение (1976) -- [ c.211 , c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен

Межфазные



© 2025 chem21.info Реклама на сайте