Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние элементов III группы периодической системы

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]


    Пятая группа периодической системы включает два типических элемента — азот и фосфор — и подгруппы мышьяка и ванадия. Между первым и вторым типическпми элементами наблюдается значительное различие в свойствах. В состоянии простых веществ азот — газ, а фосфор — твердое тело. Такое же положение имеет место и в VI группе системы, но там первый типический элемент (кислород), как и следовало ожидать, намного химически активнее серы. В V же группе, наоборот, второй типический элемент (фосфор, особенно белый) более активен как простое вещество, чем азот. Дело в том, что образование соединений первого порядка — это процесс химического взаимодействия между атомами, а не молекулами. Поэтому на химическую активность элемента (атома) решающее влияние оказывает энергия диссоциации гомоатомных соединений на атомы. А энтальпия диссоциации молекул азота N2 на атомы в 1,5 раза больше этой величины для молекул фосфора Р4 (с учетом энергии сублимации менее активного красного фосфора). Это обстоятельство является основной причиной большей химической активности фосфора по сравнению с азотом. В то же время атомы азота, естественно, химически гораздо активнее атомов фосфора. Так, ОЭО азота 3,0, а фосфора 2,]. Таким образом, когда речь идет о большей химической активности фосфора по сравнению с азотом, нужно иметь в виду активность простых веществ, а не элементов. Несмотря на имеющиеся различия между азотом и фосфором оба типических элемента и их производные — важнейшие составные части растительных и животных организмов. [c.245]

    К элементам VIB-группы периодической системы относятся хром, молибден и вольфрам. Они располагаются вблизи середины ii-рядов. В силу стабильности конфигурации у атомов первых двух элементов подгруппы — хрома и молибдена — наблюдается проскок одного электрона с оболочки ns на оболочку (п— )d. У вольфрама валентной электронной конфигурации предшествует завершенная 4/ -оболочка. Поэтому на его свойствах сказывается влияние лантаноидной контракции, хотя в меньшей мере, чем у элементов подгруппы титана и ванадия. Ниже сопоставлены некоторые характеристики элементов и простых веществ VIB-группы. [c.334]

    В то же время у магния есть некоторое сходство и с цинком. Например, сульфат магния, как и сульфат цинка, хорошо растворим в воде, зто время как сульфаты щелочноземельных металлов — труднорастворимые вещества. Металлические цинк и магний на холоду нерастворимы в воде, тогда как щелочноземельные металлы растворимы. Если сравнить электронную структуру атомов, то у элементов второй группы Периодической системы, главной и побочной подгрупп электронная конфигурация внешнего слоя одинакова Это и является причиной сходства в свойствах элементов не только в пределах подгруппы, но и некоторых элементов разных подгрупп. Однако если учесть влияние различных по структуре предпоследних слоев, очевидно, что глубокой аналогии в свойствах элементов разных подгрупп быть не может. [c.208]


    Большинство простых веществ является типичными металлами. У ряда элементов металлическими свойствами обладают лишь некоторые их модификации. К металлам относятся элементы главных подгрупп первых четырех групп периодической системы, все элементы с внешними й(- и /-оболочками электронов. Несколько модификаций, как с металлическими, так и с неметаллическими свойствами, образуют, например, С, Р, Аз, 8Ь, 5е. Устойчивость отдельных модификаций сильно зависит от внешних условий. В последнее время подробно исследовано влияние давления на фазовые превращения. Установлены общие [c.359]

    Тем не менее электронная пара, ответственная за образование ковалентной связи между атомами углерода и других элементов, обычно несколько смещена к одному из связываемых атомов иными словами, связи в органических соединениях полярны. В связях С—С1, С—О, С—N электронные пары смещены от углерода в сторону неметаллических атомов, причем полярность связи падает в приведенном ряду, в согласии с положением элементов в периодической системе Д. И. Менделеева, слева направо. Связь С—С тоже мож т быть несколько полярной, если с углеродными атомами по обе стороны от нее связаны другие атомы или радикалы, сильно отличающиеся по своим электрическим свойствам. Это взаимное влияние атомов и групп в молекуле друг на друга, влекущее заметное изменение свойств функциональных групп от природы заместителей, находящихся в непосредственной близости от них, является одним из важнейших принципов, положенных А. М. Бутлеровым в основу теории строения. [c.93]

    В ряде работ комплексообразование исследовано методом экстракции, с использованием радиоактивных изотопов или спектрофотометрии. Работ по применению спектрофотометрического варианта сравнительно немного. Методом экстракции (экстрагент — четыреххлористый углерод или хлороформ) определены константы устойчивости комплексов ПАН-2 с ионами Со(П1), Си, Мп, 2п и Ы1 [559], ПАР с ионами Са [869]. Установлено, что скорость экстракции комплекса ПАН-2 с и(У1) четыреххлористым углеродом выше, чем при экстракции хлороформом [201]. Методом экстракции изучено комплексообразование ПАН-2 с ионами Си, Мп, N1 [678], 1п [549, 918], Ее(П1), Т1(П1) [918]. Радиоактивные изотопы приме-няли для изучения экстракции комплексов ПАН-2 с ионами Си, 2п [278, 759] Ag, Ей, Но, V [760] Со, Си, Мп, N1, 2п [5591 комплекса ПАР с Оа [869], а также для исследования влияния различных маскирующих веществ — цитрата, цианида, тиомочевины, тиосульфата, фторида на экстракцию комплексов ПАН-2 с элемента ми ГВ, ПВ и П1А—УА групп периодической системы [795]. Хорошая растворимость ПАН-2 в органических растворителях и удов летворительное состояние развития теории экстракции примени тельно к реакциям комплексообразования должны способствовать успешному применению метода ко многим системам. [c.36]

    Во-вторых, все электронные состояния в металле подразделяются на состояния зоны проводимости (почти свободные электроны) и состояния внутренних электронных оболочек атомов. Число электронов проводимости на атом металла нередко равно номеру группы периодической системы, в которой находится рассматриваемый элемент. Это валентные электроны. Волновые функции невалентных электронов (электронов внутренних оболочек) сильно локализованы около атомных ядер. Эти волновые функции не перекрываются и, следовательно, взаимодействие между ионами металла в решетке сводится к отталкиванию их положительных зарядов. Влияние электронов проводимости и соседних ионов на волновые функции невалентных электронов не учитывается. Таким образом, считается, что волновые функции оболочек ионов такие же, как у изолированных ионов, хотя собственные энергии, соответствуюш,ие этим волновым функциям, в решетке отличаются от собственных энергий изолированных ионов. [c.168]

    К настоящему времени изучено влияние многих элементов на плотность р и свободную поверхностную энергию а жидкого железа. В предлагаемом обзоре для удобства систематизации влияние элементов на р и а железа рассмотрено по группам периодической системы Д. И. Менделеева. В обзор включены полученные нами данные для двойных сплавов железа с медью, золотом, алюминием, галлием, углеродом, германием и оловом. [c.28]

    По литературным данным рассмотрено влияние двадцати трех элементов на ллотность р жидкого железа и тридцати трех — на его свободную поверхностную энергию а. Для удобства систематизации влияние элементов на р и о железа рассмотрено по группам периодической системы Д. И. Менделеева. В обзор включены полученные авторами данные для двойных сплавов железа с медью, золотом, алюминием, галлием, углеродом, германием и оловом. Используя известные критерии поверхностной активности, авторы провели оценку надежности имеющихся литературных и собственных данных. Табл. 2, библиогр. 109. [c.222]


    В учебниках часто пишут, что валентность элемента равна N или (8 — Ы), где N — номер группы периодической системы интересно обсудить, выполняется ли это правило и на чем оно основано. Для металлов класса 2 (гл. 2) валентность, очевидно, равна N, так как N равно числу электронов, которые атом отдает при переходе в конфигурацию инертного газа. Для неметаллов валентность равна (8—М), если ковалентные связи образуются в соответствии с правилом октета или если элемент дает анион с конфигурацией инертного газа. С другой стороны, если октет может быть расширен, максимальное число ковалентных связей может быть равно N или (Ы — 2) и (М — 4), как в приведенных выше примерах. Когда проявляется влияние инертной пары (см. стр. 67 и 88), валентность (ионная или ковалентная) равна, очевидно, (М — 2). Поэтому у непереходных элементов почти никогда не обнаруживаются переменные валентности, отличающиеся на единицу. [c.103]

    Следует отметить также, что при совместном введении в шихту с элементами П. или П1 групп периодической системы элементов Д. И. Менделеева электрически активных для алмаза примесей Аз и Р их самостоятельное влияние на образование и рост кристаллов практически ие наблюдается. [c.380]

    Простые вещества, отвечающие всем элементам, входящим в главную подгруппу 11 группы периодической системы, представляют собой металлы. Как видно из табл. 1.4, они относительно легкоплавки, но существенно превышают соответствующие значения для ЩМ (с. 10). Самым тугоплавким является бериллий, затем вниз по группе т. пл. падает, но не монотонно по-видимому, большое влияние оказывает изменение типа кристаллической структуры по ряду Ве—Ra (у металлов с одинаковым типом структуры т. пл. уменьшается при переходе от легкого аналога к тял<елому). [c.27]

    Исследовано влияние добавок окислов металлов ПА группы периодической системы на активность никеля в реакции термического разложения метана на элементы и восстановимость окиси никеля водородом. [c.156]

    Просматривая указанные выше структуры электронных оболочек и подуровней, нетрудно заметить, что каждая из них в достроенном состоянии обладает четным числом электронов. Конечно, случайности здесь быть не может, и в этом проявляется влияние стабилизирующего действия спаривания электронов. Впрочем, пользуясь более обширным материалом, можно было бы установить, что оно проявляется все же не в одинаковой степени для разных групп электронов. Так, 5-электроны проявляют значительно более сильную тенденцию к образованию электронных пар (сравните, например, первые ионизационные потенциалы элементов первой, второй и третьей групп периодической системы, приведенные в табл. 1). В то же время р-электроны образуют р-подуровень обычно сначала в виде неспаренных электронов и лишь по исчерпании таких возможностей образуют электронные пары. Образование таких электронных пар играет значительную роль как в структурах атомов, так и в процессах образования связи между атомами — в образовании молекул. [c.43]

    Вместо того чтобы в отдельности рассматривать влияние размера и заряда катионов на другие их свойства, достаточно обсудить такую характеристику, как ионный потенциал (отношение заряда иона к его радиусу), понятие о котором было введено в гл. 8. Способность иона взаимодействовать со своим окружением в большой мере зависит от его ионного потенциала, так как он характеризует плотность заряда иона. Другим фактором, определяющим свойства катиона, является характер его ионного остова. Необходимо различать два типа катионов — жесткие и мягкие . Этими терминами описывают свойства электронного облака, окружающего ядро иона. Жесткие катионы обладают конфигурацией внешнего электронного слоя т.е. они изоэлектронны с атомами благородных газов. Их называют жесткими потому, что внешние полностью заполненные 5- и р-подоболочки создают вокруг ядра плотное электронное облако, слабо поляризуемое внешним электрическим полем окружающих анионов. Подобные катионы типичны для элементов главных подгрупп 1 и II групп периодической системы (щелочные и щелочноземельные металлы), а также для алюминия и переходных металлов III группы (8с, V, Ьа). К этому типу следовало бы также отнести такие ионы, как В Сг и Мп , если бы они су-н1ествовали на самом деле. Иногда жесткие катионы называют еще типическими ионами. [c.345]

    Этим требованиям полнее всего соответствуют металлы, окислы и сульфиды элементов VI и VI11 групп Периодической системы элементов (никель, кобальт, железо, молибден, вольфрам, хром). Состав катализаторов оказывает существенное влияние на избирательность реакций, поэтому соответствующим подбором компонентов катализаторов и их соотнощений удается осуществлять управление процессом гидроочистки моторных топлив в широких пределах. [c.201]

    Таким образом, наиболее резкое влияние воды на свойства соляных гидратов проявляется для тех же металлов, Которые дают более устойчивые аммиачно-металлические соли. Конечно, нельзя считать, случаем, что элементы 6—8-й групп периодической системы в обеих категориях [c.28]

    Книга содержит материал, касающийся 40 элементов. Вначале даются сведения общего характера определение атомных и молекулярных весов, очистка веществ, влияние ряда факторов на скорость химических реакций, электролитическая диссоциация, электрохимические свойства растворов. Далее излагается материал по изучению свойств элементов по группам периодической системы Д. И. Менделеева. В пособии дается большое количество синтезов различной сложности выполнения. [c.236]

    Сведения о катализаторах гидрокрекинга весьма ограничены. По патентным данным , наиболее распространены катализаторы гидрокрекинга, содержащие в качестве гидрирующих компонентов металлы VI и VII групп периодической системы элементов, их сульфиды или окислы, осажденные на различных носителях (в зависимости от направленности процесса). Катализаторы содержат также активирующие добавки — другие металлы, серу, галогены. Роль канадого из компонентов катализатора не может считаться до конца ясной, тем более, что несомненно взаимодействие активного агента с добавками и носителем, а также изменение всего катализатора в целом под влиянием среды, компонентов сырья и высокой температуры. [c.319]

    Известно, что каталитическим реакциям гвдрогенолиза сероорга-нических веществ способствуют элементы У1-А и УШ групп периодической системы. Однако в литературе очень мало данных об их влиянии на процессы хемосорбции сероорганики окислами металлов и, в част-нос и, 2п0, а также о совместной работе сульфидов цинка и элементов У1-А и УШ групп в промежуточной и каталитической стадиях. Настоящая работа посвящена выяснению ряда этих вопросов. [c.5]

    В дальнейшем, в третьем и четвертом [18, с. 342, 347] изданиях Основ химии , под влиянием результатоп исследований Браунера, пытавшегося обнарз жить пятивалентный дидим, Менделеев принял гипотезу о месте дидима в V группе периодической системы. Таким образом, возникала возмол ность заполнения РЗЭ нового периода, построенного наподобие предыдущих периодов, содержащих более легкие химические элементы. В реферате сообщения Менделеева о редких металлах от 1881 г. говорится [18, с. 204] Положение дидимия в [c.86]

    Причиной медленного изменения авойств химических элементов, послужившего основанием для объединения их в одной клетке периодической системы, как теперь известно, является сохранение состава и строения наружной электронной оболочки при последовательном увеличении атомного номера элемента и соответственно общего числа электронов в изолированном атоме, а также, как следствие, очень малое изменение размеров атомов и одноименных ионов при переходе от одного элемента к другому. Действительно, как показывает табл. 1.15, элементы триад VIII группы периодической системы сохраняют неизменной структуру наружных электронных оболочек (главное квантовое число /2 = 4 5 6), достраивается (при росте атомного номера) соответствующий ii-подуровень п — 1 электронный слой), степень заполнения которого не оказывает определяющего влияния а размеры атомов и ионов, а также на свойст1ва соединений, если они построены за счет преимущественно ионной химической связи. [c.111]

    Нетрудно видеть, что у элементов 1—4-й групп периодической системы катионы потеряли все внешние электроны и приобрели неоновую конфигурацию с п = 2, тогда как в 5—7-й группах катионы теряют только часть своих внешних электронов н п = 3. Длины же ковалентных связей Гаа MOHOTOiiHO уменьшаются от Ыагдо СЬ. В результате получаем следующую картину. Рефракции анионов во всех случаях определяются их собственными эффективными зарядами и монотонно увеличивающимся влиянием соседних катиоиов. Влияние же анионов на катионы принципиально различно слепа п справа от 4-й группы, поскольку здесь происходит смена п , и возрастает более чем вдвое. Следовательно, для 5—7-й групп увеличение поляризуемости катиона в поле аниона оказывается довольно значи гельным. [c.46]

    Чередование фаз Лавеса с различным типом кристаллической структуры в системах 2г — Ме (Ме — переходной металл V— VIII групп периодической системы элементов) также можно рассматривать как влияние изменения электронной концентрации в зависимости от эффективной валентности компонента В (Ме ) при неизменном компоненте А (2г). Чередование Х,2->Я1 Я2 в пределах периода в таком случае должно являться результатом увеличения эффективной валентности переходных металлов с ростом порядкового номера в соответствии с ростом суммы 8 + d электронов, а диагональное смещение кристаллохимических свойств фаз Лавеса следует отнести за счет уменьшения эффективной валентности с увеличением главного квантового числа в группах. [c.169]

    Выше ука. 41.шалось, что. элементы III и V групп периодической системы оказывают противоположные влияния ый свойства полупроводников. Одновременное присутствие в полупроводнике донорных и акцепторных микроиримесей вызывает соответствующую компенсацию, так кяк акцепторные микропримеси захватывают электроны донорных микропримесей. В случае преобладания микроиримесей одного вида полупроводник будет обладать типом проводимости, присущим этому виду. При раа- [c.22]

    Недавно метод обработки хлористым сульфурилом был испытан в применении к получению хлорозамещенных толуола, причем выяснено было каталитическое влияние хлористых соединений большого числа металлов и металлоидов. Хлориды 5Ь, В1, Ре, Мо, А1, Те, 5е благоприятствуют замещению в ядре. Хлориды . Р, Аз, Мп, Вг благоприятствуют замещению в метильной группе. Хлористая сера 5С12 ускоряет оба вида замещения. Хлористый алюминий дает возможность провести исчерпывающее хлорирование ядра до пентахлортолуола. Любопытна подмеченная здесь зависимость характера каталитического воздействия от атомного веса элементов одной и той же группы периодической системы ). [c.117]

    Последнее обстоятельство указывает на целесообразность изучения влияния на кристаллизацию алмаза азота лишь при контролируемом его введении в систему в виде соединений, обладающих высокой энергией связи, стехиометрия которых соответствует формульному выражению. Этому требованию отвечает ряд цианамидов металлов I—И групп Периодической системы элементов Д. И. Менделеева 3-го и 4-го периодов, в частности СаСЫг, Mg N2, 2пСЫ2. [c.353]

    В качестве металлоорганического компонента (т. н. сокатализатора) в каталитических системах типа Циглера-Натта используются, главным образом, органические производные непереходных металлов 1-П1 групп периодической системы. Хотя присутствие сокатализатора не всегда обязательно для осуществления ионнокоординационной полимеризации непредельных соединений, в частности, сопряженных диенов, он зачастую оказывает существенное влияние на особенности процесса синтеза полимеров, благодаря выполнению различных функций (комплексобразователя, ал-килирующего агента, восстановителя, стабилизатора активных центров (АЦ) полимеризации, передатчика цепи и т. п.). К настоящему времени имеется много данных о заметном влиянии природы непереходного элемента, строения заместителей в сокатализа- [c.45]

    Влияние растворяющегося вещества, а также растворителя на периодичность свойств растворов можно наглядно проследить на примере растворов йода и некоторых других галогенов, а также интергалидов в органических растворителях. Как известно, йод в разных растворителях по-разному окрашивает раствор. Это связано с прочностью молекулярного соединения, образованного молекулами йода и молекулами растворителя. В одной из наших работ [23—25] было показано, что если в качестве растворителя взять элементорганическое соединение типа К1ЭК2, где К1 и Ка — органические радикалы типа С Н2 -(-ь а Э —элемент, принадлежащий к одной и той же группе Периодической системы (например, к шестой или седьмой), то можио установить определенную связь между проч- [c.8]

    Чтобы изучить влияние гидратации ионов на свойства воды, а следовательно, выявить формы проявления периодического закона еще и на других свойствах растворов, были предприняты работы по исследованию давления паров воды над растворами перхлоратов и галогенидов элементов второй группы Периодической системы [51—59]. Сравнение данных по двойным системам МХг — НгО и НХ — НгО (часть данных взята из литературы [60, 61]) представлено на рис. 5 и 6. Рис. 5 относится к перхлоратным системам.. На оси абсцисс — порядковые номера элементов, а на оси ординат — давление паров воды, соответствующее растворам концентрации 3 мольЦОбО г воды. На том же рисунке нанесены данные по ионизационным потенциалам. Соединение точек проводилось так же, как и в предыдущем случае (см. рис. 3 и 4). Симбатность кривых неоспорима. Изучаемая величина (давление паров воды) сходна в некоторой степени с величинами, характеризующими теплоту гидратации иона, однако между ними имеется принципиальное различие первая величина относится к изменению свободной энергии перехода воды из раствора в газообразное состояние, что предполагает необходимость учета не только энтальпии, но и энтропии. [c.16]

    На С. порошков окислов существенное влияние оказывают структурные закансии, обусловленные нестехио-метричностью состава. Наихудшая С. порошков — как простых веществ (углерода, кремния, германия), так и соединений (карбида кремния, нитрида бора, нитрида кремния и др.), у которых преобладает ковалентная связь. Порошки этих веществ, как правило, не спекаются без приложения внешнего давления (горячего прессования). С. существенно улучшают введением активирующих добавок. Так, спекание вольфрамовых и молибденовых порошков активируют добавкалш металлов VIII группы периодической системы элементов, спекание норошка глинозема — добавками окиси магния. [c.421]


Смотреть страницы где упоминается термин Влияние элементов III группы периодической системы: [c.347]    [c.347]    [c.113]    [c.63]    [c.234]    [c.130]    [c.523]    [c.78]    [c.41]    [c.33]    [c.100]    [c.395]    [c.7]    [c.203]   
Смотреть главы в:

Химия стеклообразных полупроводников -> Влияние элементов III группы периодической системы




ПОИСК





Смотрите так же термины и статьи:

Группы периодической системы

Периодическая система

Периодическая система элементо

Периодическая система элементов

Элемент группы

Элемент периодическая



© 2025 chem21.info Реклама на сайте