Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл поглощение

Рис. 20-22. Спектр поглощения хлорофилла а. Это вещество поглощает видимый свет во всех диапазонах, кроме Рис. 20-22. <a href="/info/105368">Спектр поглощения хлорофилла</a> а. Это <a href="/info/1155727">вещество поглощает</a> <a href="/info/190955">видимый свет</a> во всех диапазонах, кроме

Рис. 25.2. Спектр поглощения хлорофилла (черная кривая) в сравнении со спектром солнечного излучения у поверхности Земли (цветная кривая). Рис. 25.2. <a href="/info/105368">Спектр поглощения хлорофилла</a> (черная кривая) в сравнении со <a href="/info/3121">спектром солнечного излучения</a> у <a href="/info/92716">поверхности Земли</a> (цветная кривая).
Рис. 107, Электронный спектр поглощения хлорофилла Рис. 107, <a href="/info/105806">Электронный спектр поглощения</a> хлорофилла
    ЛИШЬ при действии довольно жесткого ультрафиолетового излучения с длиной волны меньше 300 нм. Наоборот, вещества, которые могут поглощать световую энергию, окрашены. Например, хлорофилл— сложная органическая молекула, ответственная за поглощение света при фотосинтезе, имеет ярко-зеленую окраску, что соответствует поглощению света в видимой области. На рис. 1.07 представлен спектр поглощения хлорофилла. [c.369]

    Поскольку исходным процессом фотосинтеза является поглощение света хлорофиллом, приближенно фотосинтез можно представить в виде следующей схемы. [c.177]

    Действительно, общий цикл обмена веществом и энергией для живых организмов можно упрощенно представить как инициирующее этот цикл образование сложных молекул типа углеводов из СО2 и воды в ходе фотосинтеза растений с последующей деградацией продуктов фотосинтеза вновь до СО2 и воды в процессах дыхания в рассматриваемом организме. При этом уменьшение энтропии происходит только в момент электронного возбуждения молекулы хлорофилла за счет поглощения фотосинтезирующими организмами носителей чистой свободной энергии — квантов солнечного света, в результате чего становится возможным протекание первичных фотосинтетических реакций образования энергоемких веществ. Все происходящие далее биохимические процессы носят необратимый характер и идут только с увеличением [c.297]

    Эти два соединения, хлорофилл и гем, играют важнейшую роль в сложном механизме поглощения солнечной энергии и ее превращении для использования живыми организмами. Мы уже знаем, что характерным свойством комплексов переходных металлов является наличие нескольких близко расположенных -уровней, что позволяет им поглощать свет в видимой области спектра и придает окраску. Порфириновый цикл вокруг иона Mg в молекуле хлорофилла выполняет такую же роль. Хлорофилл в растениях поглощает фотоны видимого света и переходит в возбужденное электронное состояние (рис. 20-22). Эта энергия возбуждения может инициировать цепь химических реакций, приводящих в конце концов к образованию сахаров из диоксида углерода и воды  [c.255]


    Фотохимические реакции весьма распространены. Достаточно указать на так называемую реакцию фотосинтеза, протекающую в растениях при участии зеленого пигмента — хлорофилла — при поглощении солнечной радиации. Фотосинтез сводится к ассимиляции оксида углерода (IV) с образованием углеводов и выделением кислорода. Это многостадийный процесс, суммарное уравнение которого можно записать в виде [c.269]

    В спектре экстрагированного хлорофилла поглощение быстро уменьшается при длинах волн выше 680 спектр поглощения [c.594]

    Вычислите изменение энергии молекулы хлорофилла, которая после поглощения фотона с длиной волны 4,6-10 м (синий свет) испускает фотон с длиной волны 6,6-10 м (красный свет). [c.17]

    К сожалению, фотосинтез (так называется химический процесс с поглощением фотонов хлорофиллом) приводит к высвобождению опасного по- [c.256]

    Хроматографический анализ. М. С. Цвет установил (1903), что многие твердые материалы, весьма различные по химическому характеру, обнаруживают способность избирательного и последовательного поглощения из растворов тех или других растворенных веществ, что дает возможность достигать с их помощью разделения на составные части таких сложных естественных продуктов, как хлорофилл и др. Этот метод получил название хроматографического адсорбционного анализа, так как при разделении окрашенных веществ путем пропускания раствора их через колонку с адсорбентом различные зоны последнего приобретают разную окраску. Однако под тем же названием этот метод применяется для разделения и неокрашенных продуктов. В настоящее время выработаны новые приемы и методы хроматографического анализа. [c.373]

    Производные пиррола входят в состав гемоглобина (красящего вещества крови, играющего роль переносчика кислорода в организме человека и животных), а также хлорофилла — зеленого красящего вещества растений, выполняющего важную роль в процессе поглощения растением энергии света и в превращении двуокиси углерода воздуха в органические соединения. [c.349]

    Не менее важной заслугой Тимирязева является открытие роли хлорофилла как сенсибилизатора фотохимических реакций, происходящих при фотосинтезе. Он экспериментально установил, что фотосинтез осуществляется преимущественно п красных и синих лучах видимого спектра. Тимирязев провел следующий опыт. Ряд стеклянных трубочек, наполненных смесью воздуха и диоксида углерода и содержащих по одному одинаковому зеленому листу, был выставлен на разложенный с помощью трехгранной призмы солнечный свет так, что в каждой части солнечного спектра находилась одна трубочка. Через каждые несколько часов определялось содержание диоксида углерода в трубочках. Оказалось, усвоение СО2 происходит только в тех лучах, которые поглощаются хлорофиллом, т. е. в красных, оранжевых и желтых частях спектра. Некоторые результаты опыта представлены на ркс. 49 в виде графика, на котором по оси ординат отложены количества поглощенной СО2 в каждой из трубочек. [c.176]

    Распределение фотонов, достигающих поверхности Земли, по длинам волн оказывает глубокое воздействие на жизнь. Например, сильное поглощение ультрафиолетового излучения озоном уменьшает потенциальную угрозу мутагенных эффектов, вызываемых коротковолновым излучением. Широкий максимум в области 680 нм для фотонов, достигающих поверхности Земли (рис. 62), совпадает с полосой поглощения хлорофилла. [c.161]

    Молекулы хлорофилла представляют собой хромофоры, с помощью которых поглощается свет. В фотосинтезирующих организмах могут содержаться два и более типов молекул хлорофилла. В зеленых растениях содержатся хлорофиллы а и й, структура которых показана на рис. 63. Поглощение света в видимой области спектра обусловлено наличием сильно сопряженной порфири-новой системы. Как видно из рис. 64, хлорофилл поглощает свет наиболее интенсивно в синей и красной областях спектра, но отражает зеленый, желтый и оранжевый свет. Этим определяется характерный зеленый цвет растений. [c.162]

    В действительности такое положение является необходимым следствием квантовой природы действующего света. Поглощение света данной молекулой хлорофилла не происходит непрерывным потоком кванты света, падающие подобно капля.м дождя, поглощаются все время разными молекулами хлорофилла. [c.178]

    НИЯ при 430 нм), а отражает зеленый свет. Поглощенная хлорофиллом солнечная энергия в результате сложной последовательности реакций превращается в химическую энергию. Запасенная таким образом энергия расходуется затем на смещение реакции (25.1) вправо в направлении, в котором она чрезвычайно эндотермична. Таким образом, фотосинтез растений-это природный механизм преобразования солнечной энергии, от которого зависит поддержание жизни всех биологических систем в земных условиях. Пшеничное поле в летний сезон превращает несколько процентов падающего на него солнечного излучения в растительное вещество. Подсчитано, что если бы в Соединенных Штатах приблизительно на 6% возделываемых земель были созданы оптимальные условия для роста растений, они смогли бы получить столько энергии, чтобы удовлетворить все энергетические потребности современного общества. [c.443]


    Интенсивности поглощения чистых хлорофиллов а и Ь (а эфире) [c.210]

    Б которых влажное не смешивается с солнечными лучами, остаются белыми , — писал он. Как было установлено классическими исследованиями К. А. Тимирязева (1843—1920), процесс фотосинтеза протекает под воздействием содержащегося в зеленых частях растений сложного органического вещества — хлорофилла, спектр поглощения которого показан на рис. Х-41. [c.575]

    Каротиноиды — это желтые или оранжевые пигменты, найденные во всех фотосинтезирующих клетках. В зеленых листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла, но осенью, когда хлорофилл разрушается, именно желтые каротиноиды придают листьям характерную осеннюю окраску. В молекулах каротиноидов имеется система сопряженных двойных связей, характерная для полиенов. По своему строению каротиноиды обычно являются либо углеводородами (каротины), либо окисленными углеводородами, т. е. кислородсодержащими (каротинолы или крантофиллы). Они образуют 40-звенную углеродную цепь, построенную из изопреновых субъединиц (рис. 3.9). Спектры поглощения каротиноидов характеризуются наличием трех полос в области от 400 до 550 нм. В лемеллах хлоропласта каротиноиды расположены в непосредственной близости от хлорофилла. Поглощенная каротиноидами энергия может передаваться хлорофиллу а и использоваться для фотосинтеза. Кроме того, каротиноиды могут защищать молекулы хлорофилла от чрезмерного фотоокисления на слишком ярком свету. [c.45]

    Спектр поглощения хлорофилла а в органических растворителях имеет два основных и два второстепенных пика. Один из основных пиков располагается в голубой и ближней УФ-об-ластях спектра, а другой — в красной. У фотосинтезирующих организмов помимо хлорофилла а обычно содержатся один или [c.230]

    Для образования одной молекулы глюкозы, согласно этому уравнению, 24 раза должно произойти поглощение света хлорофиллом, и каждый раз хлорофилл отдает свой возбужденный электрон на восстановление СОг. Отдав свой электрон, хлорофилл приобретает свойства окислителя и стремится получить электрон обратно. Получает он электрон от молекулы воды с помощью сложной цепочки реакций, рассматриваемых в специальных курсах биохимии. Итоговое уравнение этой цепочки можно записать [c.370]

    Мембранные системы в хлоропласте состоят из ряда уплощенных мешков, которые наслаиваются друг на друга в виде стопок, образуя так называемую грану (рис. 8.8). Электроны могут направленно переноситься с одной стороны мембраны на другую так, что кислород выделяется внутри, а процесс восстановления происходит снаружи. Число молекул хлорофилла в каждом хлоропласте прямо зависит от величины поверхности мембран и составляет приблизительно 10 хлорофилльных молекул на хлоропласт. По-видимому, молекулы пигментов (преимущественно хлорофилла) должны распределяться в виде монослоев по поверхности мембран, создавая максимальную площадь поверхности пигмента для поглощения света и переноса энергии к особым участкам мембраны. Эксперименты с импульсным освещением показали, что скорость выделения кислорода у растений возрастает с ростом интенсивности света до определенного предела, соответствующего возбуждению одной из каждых 300 молекул пигмента. Однако этот результат не означает, что другие пигментные молекулы всегда неактивны, потому что квантовые выходы, измеренные при низких [c.232]

    Процесс поглощения света зелеными листьями растений осуществляется при непосредственном участии природного фотокатализатора хлорофилла — сложного магнийорганического соединения, придающего зеленую окраску листьям растений. [c.181]

    Рис. х-41. Спектр поглощения хлорофилла. [c.575]

    Важным примером делокализации и поглощения энергии является хлорофилл, который обсуждался в послесловии к гл. 20. Ароматическое кольцо, окружающее ион Mg , представляет собой протяженную делокализо-ванную систему, образуемую порфирином (см. рис. 20-19). Электронные энергетические уровни этой системы обусловливают поглощение света с одним максимумом в фиолетовой области, при 430 нм, и вторым максимумом в красной области, при 690 нм (см. рис. 20-22). При поглощении света молекулой хлорофилла ее электрон возбуждается на более высокий уровень это позволяет хлорофиллу восстанавливать ионы Ге " в ферре-доксине, белке с молекулярной массой 13000, который содержит два атома железа, координированные к сере. Последующее окисление ферредоксина служит источником энергии для протекания других реакций, которые в конце концов приводят к расщеплению воды, восстановлению диоксида углерода и, наконец, к синтезу глюкозы, С НиОв. [c.307]

    После поглощения фотона возбужденная молекула хлорофилла может участвовать в процессах двух типов. Она может флуоресцировать или использовать избыточную электронную энергию для проведения каких-то энергетически невыгодных реакций. [c.162]

    На фиг. 67 приводится упрощенная схема энергетических уровней молекулы хлорофилла. Поглощение света в коротковолновой (сине-фиолетовой) области спектра приводит к появлению электрона на втором синглетном уровне 5. При поглощении квантов красного света происходит переход электронов с основного 5о уровня на первый синглетный 8. Электроны с 8 уровня быстро падают на 8, что сопровождается потерей части энергии на тепловую диссипа- [c.143]

    Спектр действия фотосинтеза, т. е. зависимость эффективности этого процесса от длины волны, показывает, что среди пигментов, участвующих в фотосинтезе, главную роль играет хлорофилл функция вспомогательных пигментов сводится к тому, что они передают хлорофиллу поглощенную ими энергию. В фотосинтезе действуют совместно две фотосистемы в обеих этих фотосистемах первым событием после поглощения кванта света является отрыв электрона и временный его захват соединением, для которого характерен высокий окислительно-восстановительный потенциал. От данного соединения электрон переходит затем к ряду других, с постепенно понижающимся окислительновосстановительным потенциалом, и этот его переход сопровождается запасанием некоторого количества энергии в форме АТР. Такое образование АТР носит название фотофосфорилирования] АТР синтезируется хемиосмотическим путем, когда между наружной и внутренней стороной тилакоидной мембраны возникает градиент pH. Градиент устанавливается благодаря направленному переносу протонов пластохиноном, а также накоплению внутри тилакоида протонов, высвобождающихся в процессе фотолиза воды. Когда эти скопившиеся внутри тилакоида протоны диффундируют наружу по особым каналам в тилакоидной мембране, их энергия запасается путем синтеза АТР из ADP и Pi. Часть электронов, высвободившихся лри фотолизе воды, присоединяется к NADP+, восстанавливая его в NADPH. Это соединение вместе с АТР используется затем для восстановления [c.138]

    Световая энергия, поглощенная хлорофиллом, используется как движущая сила реакции, которая самопроизвольно протекать не может,-восстановления НАДФ с использованием воды в качестве восстановителя  [c.336]

    Известно, что в составе буровых растворов содержится значительное количество компонентов, загрязняющих деятельный почвенный слой. При их попадании в почву происходит разрушение хлорофилла у зеленых растений, за счет че 0 резко снижается поглощение ими солнечной энергии. В результате этого прекращается фотосинтез и уменьшается ппояуктияность ппчпенно-пястчтельного покрова. [c.78]

    В вопросе о происхождении азотистых соединений имеет большое значение наличие в нефтях и ее природных производных соединений типа гемина и хлорофилла (порфирины). Они были обнаружены Трейбсом по характерным спектрам поглощения спиртовых г.ытяжек из нефтей. Растворы порфирина показывают четыре ясные полосы поглощения в видимой части спектра и одну — в ультрафиолетовой. Порфирины образуют комплексные соединения с металлами, что вызйвает появление новых полос [c.164]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    Запасание и использование солнечного излучения зависит от наличия в растениях хлорофилла. На рис. 8.7 показана структурная формула наиболее широко распространенного хлорофилла о. Резонанс сопряженной системы приводит к оптическому поглощению в видимой области спектра на длинах волн, соответствующих максимальной солнечной интенсивности на уровне моря. В то же время свойственная порфнриновой структуре стабильность гарантирует, что поглощение излучения будет сопровождаться процессами переноса энергии или излучения, а не диссоциацией хлорофилла. Хлорофилл является особо эффективным сенсибилизатором благодаря способности поглощать энергию света и передавать ее от одной молекулы к другой до тех пор, пока не появятся условия, подходящие для сенсибилизируемой реакции. В органических растворах выход флуоресценции составляет примерно 0,3 (хотя в естественных условиях он значительно меньше), что является дополнительным свидетельством стабильности молекулы. [c.230]

    Опыт показывает, что иногда фотохимические процессы осуществляются под действием излучения, хотя оно совершенно не поглощается реагирующими веществами. Казалось бы, в данном случае имеет место отступление от закона Гроттуса. Однако исследования показали, что эти реакции происходят только тогда, когда п реагирующим веществам примешиваются некоторые посторонние примеси, которые, поглощая световую энергию, передают ее затем реагирующим веществам. Эти примесные вещества получили лазванпе сенсибилизаторов. Механизм действия сенсибилизаторов состоит в том, что молекула сенсибилизатора при поглощении фотона переходит в возбужденное состояние, а затем, столкнувшись с молекулой реагирующего вещества, передает ей избыток своей энергии, вызывая тем самым химическое превращение. Примеров сенсибилизированных реакций можно привести очень много. Так, путем добавления к фотоэмульсии некоторых веществ, выполняющих роль сенсибилизатора, можно значительно повысить ее чувствительность к красным лучам света. Известный всем хлорофилл также является сенсибилизатором фотохимических реакций образования органических веществ в зеленых растениях. [c.175]

    Обратите внимание на то, что для образования одного моля сахара СбН120б должно быть поглощено и использовано 48 молей фотонов. Необходимая для этого энергия излучения поступает из видимой части солнечного спектра (см. рис. 5.3 ч. 1). Фотоны поглощаются фотосинтетическими пигментами в листьях растений. К важнейшим из этих пигментов относятся хлорофиллы структура наиболее распространенного хлорофилла, так называемого хлорофилла-а , показана на рис. 25.1. Хлорофилл представляет собой координационное соединение. Он содержит ион связанный с четырьмя атомами азота, которые расположены вокруг него по вершинам квадрата в одной плоскости с металлом. Атомы азота входят в состав порфиринового цикла (см. разд. 23.2). Следует обратить внимание на то, что в окружающем ион металла цикле имеется ряд двойных связей, чередующихся с простыми связями. Благодаря такой системе чередующихся, или сопряженных, двойных связей хлорофилл способен сильно поглощать видимый свет. На рис. 25.2 показано соотношение между спектром поглощения хлорофилла и спектральным распределением солнечной энергии у поверхности Земли. Зеленый цвет хлорофилла обусловлен тем, что он поглощает красный свет (максимум поглощения при 655 нм) и синий свет (максимум поглоще- [c.442]

    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    Хлорофилл — зеленый пигмент, содержащийся в листьях растений вместе с желтыми красителями — каротиноидами, относящимися к группе распространенных в растительном мире липохро-мов (стр. 322). Хлорофилл регулирует процессы поглощения растениями СО2 из воздуха под влиянием лучистой энергии. В пищевой промышленности применяется как безвредная зеленая краска. [c.420]

    Эта же красная флуоресценция также наблюдается при освещении хлорофилла а в области его основной ко-ютковолновой полосы поглощения. [c.231]

    Для эффективного протекания процесса фотосинтеза необходимо возбуждение более чем одного фотосинтетически активного пигмента. Этот результат предполагает возможность участия двух главных процессов в реакции преобразования энергии при фотосинтезе. Квантовый выход фотосинтеза падает при длинах волн света больше, чем длина волны максимума поглощения в красной области (эффект Эмерсона, или красное падение ), хотя поглощение в этой области (675—720 нм) продолжает приводить к заселению уровня Si" хлорофилла а. Однако если к возбуждающему световому пучку добавляется более коротковолновый свет (Ж670 нм), то квантовый выход фотосинтеза существенно возрастает. Низкие квантовые выходы фотосинтеза, получаемые при длинноволновом освещении, могут быть подняты до нормальных значений одновременным освещением коротковолновым светом. [c.233]

    Как видно из рис. 8.9, максимум длинноволнового спектра поглощения хлорофилла в хлоропластах сдвинут в красную область по сравнению с максимумом хлорофилла в растворе. Этот эффект частично может быть объяснен комплексообразо-ванием молекул хлорофилла с белками. При более детальном изучении спектров поглощения хлоропластов удается различить по крайней мере две спектральные формы хлорофилла, которые, возможно, обусловлены комплексообразованием хлорофилла а с различными белками или мономерами и димерами хлорофилла. Эти две спектральные формы хлорофилла приписывают пигментным системам I и II, или фотосистемам I и II (ФС I и ФСП), фотохимические реакционные центры которых имеют характерные полосы поглощения с максимумами при700 и 680 нм соответственно (обозначаются как Р оо и Резо). Возможно, более коротковолновый спектр поглощения ФС II по сравнению со спектром ФС I связан с наличием вспомогательных пигментов (например, хлорофилла Ь у зеленых растений). Однако флуоресцентные исследования показывают, что энергия [c.233]

    В клетках растений, обязательно в присутствии хлорофилла (как катализатора), оксид углерода (IV) взаимодействует с водородом воды и другими веществами, образуются сложные органические соединения — белки, з-глеводы и жиры. Этот процесс происходит только при поглощении энергии солнечного света. Поэтому он называется фотосинтезом. [c.319]

    В колориметрии измеряют интенсивность света, прошедшего через окрашенный раствор и являющегося дополнительным к поглощенному свету. Например, раствор, поглощающий лучи красного цвета, окрашен в дополнительный к нему сине-зеленый цвет, как это установил К. А. Тимирязев для растворов хлорофилла. Раствор, поглощающий желто-зеленые лучи, окрашен в фиолетовый цвет, например раствор KMnOi. Раствор, поглощающий желтые лучи, окрашен в синий цвет, например раствор аммиачного комплекса меди. Дополнительные цвета при смешении их с основными дают белый (ахроматический) цвет. [c.460]


Смотреть страницы где упоминается термин Хлорофилл поглощение: [c.17]    [c.135]    [c.231]    [c.340]    [c.346]    [c.352]   
Фотосинтез (1972) -- [ c.241 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорофилл

Хлорофилл хлорофилл



© 2024 chem21.info Реклама на сайте