Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительные реакци неустойчивые состояния

    У пятивалентного америция обнаружено одно очень интересное свойство — способность к диспропорциониро-ванию. Оказалось, что для изменения валентного состояния в кислых растворах ему не нужны партнеры. Окислительно-восстановительная реакция протекает между ионами самого пятивалентного америция окисление одного происходит за счет восстановления другого два иона Ат(У) дают Ат(IV) и Ат(VI), однако неустойчивый Ат(IV) практически не появляется. В зависимости от условий он мгновенно реагирует с другими америциевыми же ионами (в степени окисления V) или сам диспропорцио-пирует. В результате, как правило, каждые три прореагировавшие иона Ат(У) превращаются в два иона Ат(VI) и [c.411]


    Окислительно-восстановительная реакция особенно склонна к медленному течению, когда в обеих полуреакциях участвуют неравные количества электронов . В этом случае реакция не может проходить только в одну бимолекулярную стадию, она осуществима путем последовательных стадий или через реакцию высшего порядка. В многостадийной реакции обычно возникает неустойчивое состояние промежуточной степени окисления реакция высшего порядка обусловлена очень маловероятными столкновениями нескольких реагирующих частиц. [c.502]

    Роль окислительно-восстановительных реакций и, Ыр и Ри в технологии переработки ядерного горючего огромна. Современные промышленные методы извлечения Ри и Мр и регенерации и, методы их разделения и очистки от радиоактивных продуктов деления основаны на различии окислительно-восстановительных свойств этих элементов. Например, для очистки плутония от продуктов деления при экстракции трибутилфосфатом ((пурекс-процесс) плутоний необходимо стабилизировать в четырехвалентном состоянии с другой стороны, для отделения от урана плутоний должен быть переведен в неэкстрагируемую трехвалентную форму, в то время как уран должен оставаться в шестивалентном состоянии. При этом необходимо учитывать термодинамическую неустойчивость Ри (IV) в слабокислых растворах, особенно при повышенной температуре, возможные побочные процессы, связанные с окислительным действием среды (НМОз), влияние ионизирующего излучения и т. д. От правильного выбора восстановителя или окислителя и от условий проведения реакции зависит успешность той или другой технологической операции. [c.5]

    Значительная разница в скоростях электролитического выделения урана, нептуния и плутония в одних и тех же условиях (см. рис. 2.58), по-видимому, объясняется различной устойчивостью их пятивалентных ионов, являющихся промежуточными продуктами первой стадии восстановления в прикатодной области. Ион нептуния (V) является самым устойчивым из трех перечисленных элементов, и потому при своем движении к катоду он не претерпевает диспропорционирования на четырех- и шестивалентную формы. В отсутствие посторонних окислителей нептуний (V) сразу же разряжается на катоде и восстанавливается, вероятно, до двуокиси. При этих же условиях уран (V) вследствие своей неустойчивости претерпевает ряд окислительно-восстановительных процессов, что замедляет процесс его электролитического выделения. Устойчивость плутония (V) является средней между устойчивостью урана (V) и нептуния (V), и в соответствии с этим скорость его выделения на катоде будет промежуточной. Отсюда следует, что окислительно-восстановительные реакции на электродах и устойчивость различных валентных состояний урана и трансурановых элементов имеют существенное значение для их электролитического выделения. [c.185]


    Окислительно-восстановительные реакции склонны к медленному течению и, как правило, протекают многостадийно. В многостадийной реакции обычно возникают неустойчивые состояния промежуточных степеней окисления. Скорость реакции лимитируется скоростью наиболее медленной стадии. Скорость реакции имеет большое значение для химического анализа, особенно в титриметрии. Малая скорость вблизи точки эквивалентности часто становится препятствием для применения [c.169]

    Влияние pH раствора. Как было показано в гл. 2 ( 3) увеличение активности ионов водорода в водной среде обычно приводит к смещению ионных равновесий в сторону возникновения свободных (гидратированных) катионов или неионизированных кислот. Увеличение pH среды (т. е. уменьшение активности ионов водорода) приводит к стабилизации анионов. Благодаря этим эффектам происходит и воздействие pH на равновесие окислительно-восстановительных реакций. Как известно, более высокие валентные состояния элементов характеризуются возрастанием кислотных свойств и способности к образованию ковалентных соединений. Поэтому щелочная среда (высокое значение pH), в которой устойчивы анионы, способствует стабилизации окисленных состояний элементов. Наоборот, кислая среда (малые значения pH) делает окисленные формы менее устойчивыми и способствует образованию восстановленных форм, поскольку в восстановленных состояниях элементы обычно образуют катионы или менее сильные кислоты. Так как окисленные формы в кислой среде становятся неустойчивыми, то их свободная энергия, выражаемая величиной окислительного потенциала, принимает высокие значения. В щелочной среде, когда эти формы более устойчивы, окислительные потенциалы понижаются, т. е. уменьшается стремление к превращению окислителей в восстановленные формы. [c.174]

    В данной главе особое внимание уделено роли координационного соединения при действии окислителей или восстановителей, причем такой комплекс может быть только неустойчивым промежуточным соединением. Здесь рассматриваются необычные, но часто образующиеся состояния окисления металлов. Также обсуждаются вопросы, касающиеся того, каким образом направление реакции определяется лигандом, хотя аналогичные вопросы затронуты и в других местах. Подобные рассуждения можно использовать при рассмотрении свободных радикалов в окислительно-восстановительных реакциях с участием переходных металлов [14]. В последних монографиях хорошо представлены общепринятые методы изучения окислительно-восстановительных реакций как с точки зрения субстрата, так и металла-окислителя [15]. [c.136]

    Окисление центрального иона металла до неустойчивого состояния окисления часто является результатом внутримолекулярной окислительно-восстановительной реакции его с лигандом. И наоборот, окислительно-восстановительные реакции могут идти, если окисляется лиганд. Скорость окисления координированного лиганда может сильно отличаться от скорости окисления свободного лиганда. [c.142]

    Образующиеся при электролизе нейтральные атомы или атомные группы, неустойчивые в свободном состоянии, иногда вступают во взаимодействие между собой или с молекулами растворителя и растворенного вещества, что накладывает отпечаток на химизм всего процесса. В ряде случаев имеет место химическое взаимодействие этих компонентов раствора с материалом электродов. Все реакции, протекающие при электролизе (в том числе и вторичные), имеют ярко выраженный окислительно-восстановительный характер. При этом на катоде происходят процессы восстановления, а на аноде — окисления, так как катод обладает избыточными электронами по сравнению с нейтральным состоянием данного материала и легко отдает свои электроны, а анод, наоборот, обладает меньшим количеством электронов, чем его материал в нейтральном состоянии. [c.265]

    Для получения ПВХ могут быть использованы обратимые окислительно-восстановительные системы. Кроме окислителя и восстановителя, в реакционную смесь добавляют щавелевую или аскорбиновую кислоту. Этим достигается более полное использование компонентов инициирующей системы, в частности восстановителя. Например, образующиеся при реакции сульфата двухвалентного железа и перекиси водорода вместе со свободными радикалами ионы трехвалентного железа под действием этих кислот переходят в двухвалентное состояние. Поэтому вместо неустойчивого сульфата закисного железа можно применять более устойчивый сульфат окис-ного железа. Запатентован способ полимеризации винилхлорида в отсутствие эмульгатора под влиянием окислительно-восстановительной обратимой системы, состоящей из перекиси водорода, сульфата трехвалентного железа и аскорбиновой кислоты .  [c.137]


    Ионы электролита, достигая соответствующего электрода (катионы— катода, а анионы — анода), в результате взаимодействия с ним уменьшают свой зэряд, большей частью теряя его и превращаясь в нейтральные атомы или атомные группы, которые или отлагаются на электроде, или, будучи в свободном состоянии неустойчивыми, вступают в какую-либо вторичную реакцию между собой, с молекулами растворителя, с другими растворенными веществами или, наконец, с материалом электрода. Такие вторичные реакции могут быть самыми разнообразными. Следует заметить при этом, что как первая фаза процесса, так и весь процесс в це лом всегда являются окислительно-восстановительной реакцией.. нод (положительный электрод) обладает меньшим числом электронов, чем его материал в нейтральном состоянии. Поэтому [c.443]

    Наличие в сульфитных щелоках некоторого количества альдо-новых кислот, не содержащихся в связанном или свободном состоянии в древесине, дало основание высказать гипотезу [12] о протекании во время сульфитной варки окислительно-восстановительной реакции, при которой альдегидбисульфитное соединение сахарав под действием избытка ионов бисульфита образует неустойчивое кетосульфоновое соединение и водород. Последний восстанавливает ион бисульфита в ион тиосульфата  [c.352]

    Ионы электролита, достигая соответствующего электрода (катионы— катода, а анионы — анода), в результате взаимодействия с ним уменьшают свой заряд, большей частью теряя его и превращаясь в нейтральные атомы или атомные группы, которые или отлагаются на электроде, или, будучи в свободном состоянии неустойчивости, вступают в какую-либо вторична/ю реакцию между собой, с молекулами растворителя, с другими растворенными веществами или, наконец, с материалом электрода. Такие вторичные реакции могут быть самыми разнообразными. Следует заметить при этом, что как первая фаза процесса, так и весь процесс в целом всегда являются окислительно-восстановительной реакцией. Анод (положительный электрод) обладает меньшим числом электронов, чем его материал в нейтральном состоянии. Поэтому он должен интенсивно отнимать электроны, т. е. анод всегда является окислителем. Катод же (отрицательный электрод) обладает избыточными электронами по сравнению с его материалом в нейтральном состоянии. Поэтому он, наоборот, легко отдает электроны, т. е. катод всегда является восстановителем. Оба эти пропегса — анпд-ное окисление и катодное восстановление — и составляют основу процесса электролиза. [c.438]

    Электрический потенциал асимметрии не влияет на снимаемый с электродов полезный сигнал. Электрическим потенциалом асимметрии в данном случае называется напряжение, которое сушествует на электрически разомкнутыд э.чектродах при отсутствии перепада давления на преобразующей мембране. Наличие потенциала асимметрии обусловлено тем, что используемые в ЭКП электроды, как правило, с электрохимической точки зрения не являются обратимыми. Это означает, что в системе электрод — рабочая жидкость отсутствуют вещества, которые обеспечивали бы прохождение окислительно-восстановительной реакции с высоким током обмена, обеспечивающей устойчивое, не меняющееся при прохождении тока значение гальвани-потенциала между электродом и раствором. Значения этих потенциалов для первого E t) и второго г(0 электродов определяются окислительно-восстановительными процессами, связанными с фазовыми переходами окислов на поверхности электродов или же другими конкурирующими необратимыми электрохимическими реакциями, зависящими от состояния поверхности электрода. По этой причине они являются неустойчивыми во времени. Поскольку практически невозможно изготовить два совершенно идентичных по поверхностным свойствам электрода, потенциалы Ei(t) и 2(0 будут иметь неодинаковые значения и неодинаково изменяться со временем. Поэтому даже при отсутствии течения жидкости через мембрану между электродами обычно существует отличное от нуля, изменяющееся со временем напряжение — потенциал асимметрии E(t), равный Ei(t)—E2 t). Изменение E(t) во времени проявляется как дополнительный низкочастотный шум ЭКП. В потенциальном режиме этот шум может быть отфильтрован от полезного сигнала в том случае, если скорость изменения E t) много меньше скорости изменения снимаемого электрического сигнала, т. е. тогда, когда [c.223]

    В публикациях этих исследователей изложены общие принципы метода, его возможности и перспективы применения в исследовании объектов различной природы. Эти методы принадлежат к наиболее совершенным и эффективным способам изучения окислительно-восстановительного состояния различных молекул, в том числе имеющих значение в биологии, и прямого обнаружения неустойчивых промежуточных частиц. Спектроэлектро-химия органически сочетает два совершенно независимых метода электрохимию и спектроскопию. Спектральные измерения проводят в принципе в том н-се растворе, в котором осуществляют электрохимическую реакцию. Такая экспериментальная техника позволяет регистрировать спектры интермедиатов, определять значения окислительно-восстановительных потенциалов образовавшихся обратимых окислительно-восстановительных систем и наблюдать за последовательностью химических реакций электрогенерированных частиц. [c.51]


Смотреть страницы где упоминается термин Окислительно-восстановительные реакци неустойчивые состояния: [c.277]    [c.288]    [c.29]    [c.632]    [c.445]   
Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.433 , c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Окислительно-восстановительные реакци

Окислительно-восстановительные реакции

Окислительно-восстановительные состояния



© 2025 chem21.info Реклама на сайте