Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетическая единица

    Теоретически прочность системы может быть оценена сравнением локальных напряжений с прочностью связей между кинетическими единицами высокополимера, образующих пространственную сетку. Разрушение гранулы наступает при значительной деформации и разрыве химических связей этих кинетических единиц. Мерой прочности связей служит силовая постоянная, которая определяет сопротивление молекулы деформации равновесной конфигурации за счет растяжения химических связей [68]. Силовая [c.328]


    При исследовании диэлектрических свойств полимеров особый интерес представляет оценка полярности кинетических единиц — элементарных диполей мономерных звеньев, так как такая информация помогает изучению строения соответствующих макромолекул [39, с. 339]. Обычно диполи в полимерах связаны ковалентно с основной цепью макромолекулы или с ее боковыми группами. Дипольный момент макромолекулы, позволяющий судить о ее гибкости, можно определить как векторную сумму составляющих векторов — дипольных моментов звеньев цепных молекул Wo  [c.242]

    Особенности строения макроцепей и многообразие форм молекулярной подвижности в полимерах приводят к множеству релаксационных процессов, каждый из которых связан с движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков цепи, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макроцепей, обеспечивающие образование дырок , ускоряют релаксационные процессы. Приближенный расчет времени релаксации таких быстрых процессов при объемной деформации некоторых полимеров (сополимеров), выполненный в работах [16—18], показывает, что при проникновении низкомолекулярного компонента в полимер проницаемость последнего контролируется перемещением структурных элементов макроцепей только в начальный период процесса набухания (время релаксации 10 — 10 с). [c.297]

    Для одного сорта кинетических единиц, участвующих в одном релаксационном процессе, релаксация напряжения подчиняется уравнению Максвелла  [c.59]

    Воздействие иона на ближайшие молекулы растворителя, которые теряют при этом независимое поступательное движение и движутся вместе с ионом как единая кинетическая единица, целесообразно называть первичной соль- [c.417]

    В настоящее время основное внимание исследователей сосредоточено на изучении физико-химических свойств веществ в трех агрегатных состояниях, т. е. на анализе конечных результатов процесса. Свойства веществ в этих конечных (объемных) состояниях не зависят от геометрических размеров системы. Иначе обстоит дело ири исследовании физико-химических свойств веществ в состоянии фазового перехода. В качестве кинетической единицы при фазовых переходах принята сложная структурная единица. [c.119]

    Высокоэластическое состояние полимеров - аморфное состояние полимеров (см.), характеризующееся большими обратимыми деформациями, обусловленными сегментальной подвижностью макромолекул. Движение макромолекул как отдельных кинетических единиц в высокоэластическом состоянии ограничено. [c.397]


    На границе раздела фаз ПАВ могут находиться либо в виде отдельных кинетических единиц, либо образовывать двумерные структуры в результате возникновения межмолекулярных кон- [c.67]

    Формулы (V. 4 а) и (V. 6 а) получаются при рассмотрении флуктуации локального свободного объема в предположении, что для реальности перескока кинетической единицы из одного равновесного положения в другое необходимо наличие некоторого минимального свободного объема систем>1 Кщщ. Частота перескоков [c.166]

    Ребиндером и Щукиным (1958 г.) был дан общий количественный анализ этой проблемы, учитывающий участие совокупности обособившихся частиц дисперсной фазы в броуновском движении, т. е. энтропийный фактор. Рассмотрим, следуя схеме Ребиндера и Щукина, простой случай отделения от компактной фазы (жидкой или твердой) и равновеликих сферических частиц диаметром 2г = б, которые распределяются в 1 см дисперсионной среды, содержащей N молекул. Это требует работы плб а. Однако, включаясь в тепловое движение в качестве равноправных кинетических единиц, эти частицы получают тепло ( от термостата ), т. е. увеличивают энтропию системы на величину [c.91]

    Если этот же сорт кинетических единиц имеет распределение по размерам или по прочности сцепления в различных частях структуры, то релаксационный процесс характеризуется спектром времен релаксации с выделением главного времени релаксации, которому соответствует максимум. Если же имеется еще и набор различных по природе кинетических единиц, качественно отличных друг от друга, то наблюдается набор механизмов релаксации, которые на рис. 1. 18 представлены набором полос и максимумов. [c.59]

    Согласно работе [36, с. 378] связь между эффективным объемом кинетической единицы Ик и коэффициентом В выражается формулой [c.61]

    Примечательно, что энергия активации вязкого течения исследованных эластомеров совпадает с энергией активации Я-процессов медленной стадии физической релаксации. Например, для сшитого бутадиен-стирольного каучука энергия активации процессов вязкого течения и разрушения в высокоэластическом состоянии и процесса медленной стадии физической релаксации совпадают (54 кДж/моль). По-видимому, механизмы процессов медленной стадии физической релаксации, разрушения и вязкого течения имеют аналогичную природу, связанную с процессом перестройки надмолекулярной организации. Влияние напряжения на скорость вязкого течения связано именно с этой перестройкой и с обратимым разрушением микроблоков, тогда как кинетической единицей процесса вязкого течения является сегмент полимерной цепи (см. сноску на стр. 48). На этом основана наша концепция вязкого течения, изложенная в гл. V. [c.64]

    Анализ обоих релаксационных процессов при сопоставлении уравнения (I. 25) с экспериментальными данными привел к резуль-татам представленным в табл. I. 2. Как видно, ниже Гс предэкспо-ненциальный коэффициент А практически совпадает с коэффициентом В (табл. 1.1) для сегментальной подвижности в сс-процессе. То же самое можно сказать и об объеме кинетической единицы. [c.67]

    Выше Гс предэкспоненциальный коэффициент В велик по сравнению с сегментальным В = 5-10 с, что свидетельствует о больших размерах кинетических единиц, участвующих в релаксационном процессе выше Гс. Объем кинетической единицы (Ок также значителен (на три порядка.величины больше объема сегмента). Таким образом, второй процесс связан с подвижностью более крупных, чем сегменты, образований, которые есть не что иное, как микроблоки упорядоченной структуры. [c.67]

    Основными кинетическими единицами в полимерах являются сегменты. Они не только достаточно велики, -но и движения их скоррелированы. Это относится и к движению смежных сегментов разных цепей. Эти обстоятельства вместе со связанностью мономерных звеньев в ковалентные цепочки делают полимеры особо подверженными стеклованию. [c.78]

    Ввиду того, что низко- и высокомолекулярные соединения в жидком состоянии резко отличаются по своему строению, различаются и механизмы их вязкого течения. Это легко видеть из наблюдений за зависимостью энергии активации П вязкого течения полимерных растворов или расплавов от молекулярной массы и возрастает с молекулярной массой и достигает некоторой предельной величины. В случае парафиновой цепочки этот предел составляет 25—29 кДж/моль, для каучуков 14 кДж/моль и расплавов твердых карбоцепных полимеров 84—125 кДж/моль. Относительно низкие значения энергий активации у полимеров свидетельствуют о том, что статистически независимая кинетическая единица течения — тот же сегмент цепи, включающий в себя несколько десятков углеродных атомов хребта цепи, который является основным релаксатором и в высокоэластическом состоянии. Вязкость системы прямым образом зависит от числа сегментов, входящих в цепь. Соответственно, механизм вязкого течения полимеров заключается в перемещении цепей друг относительно друга путем перехода отдельных сегментов из одного равновесного положения в другое в результате теплового движения. Строго говоря, этот механизм течения справедлив для умеренно концентрированных растворов, а для полимеров, находящихся в более конденсированном состоянии, механизм течения более сложен. [c.168]

    Так как молекулярная перегруппировка представляет собой активационный процесс, то время молекулярной релаксации, отнесенное к одной кинетической единице, выражается уравнением [c.84]


    Формула (V.6a) неприменима при температурах, превосходящих Гс на 100°. Это согласуется с представлениями о том, что при повышении температуры кооперативные процессы играют существенно меньшую роль и подвижность кинетических единиц (элементов течения) перестает быть функцией только собственного объема. [c.167]

    Это выражение получено в результате разделения энергии активации вязкого течения на энергию образования дырки и энергию перемещения кинетической единицы в эту дырку. [c.167]

    Для объяснения природы неньютоновского течения системы, состоящей из, кинетических единиц одного типа, Эйринг [50] использовал следующее выражение, без достаточных оснований применяемое к полимерам  [c.169]

    Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура жидкости непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц, приводящих к изменению ближнего порядка, степени микрорасслоения и других структурных особенностей жидкости. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего в области некоторой температуры стеклования Тс равновесие в ближнем порядке практически уже не успевает устанавливаться и структура жидкости фиксируется . Отсюда следует, что в данном стекле структура примерно такая же, как у его расплава при температуре стеклования. Жидкость можно застекловать не только путем понижения температуры, но и повышением давления. Стеклование может происходить при некотором давлении рс из-за уменьшения подвижности частиц вследствие возрастания межмолекулярного взаимодействия и уменьшения свободного объема. [c.36]

    Для теории структурного стеклования фундаментальным понятием является скорость молекулярных перегруппировок, которая характеризует релаксационные процессы, определяющие быстроту перестройки структуры в жидкостях или системах с жидкой структурой 6]. Квазинезависимыми структурными единицами, участвующими в перегруппировках, являются кинетические единицы (атомы и молекулы в низкомолекулярных и сегменты цепей в высокомолекулярных соединениях). [c.36]

    Молекулярная подвижность в полимерах и их физические состояния. В ряду макроскопических свойств полимерных материалов, определяющих области их применения, особая роль принадлежит механическим свойствам. Они у полимеров являются уникальными, не характерными для обычных низкомолекулярных веществ. Это обусловило выделение высокомолекулярных соединений в особый класс материалов, поведение которых не может быть охарактеризовано на основе обычных представлений об агрегатных состояниях вещества. Как известно, в молекулярной физике эти состояния определяют в зависимости от интенсивности и характера теплового движения его основных структурных и кинетических единиц. В случае низкомолекулярных веществ оба типа единиц совпадают, для полимеров же такое совпадение не имеет места. --Их- структурной единицей является макромолекула, но перемещение макромолекулы — это не единовременный акт, а совокупность последовательных перемещений отдельных сравнительно независимых субчастей цепи — кинетических сегментов. Такой сегмент, содержащий от нескольких единиц до нескольких десятков мономерных звеньев, и является основным типом кинетических единиц в полимере. [c.39]

    При высоких температурах преобладающими механизмами ползучести становятся процессы диффузионной миграции атомов в направлении, определяемом приложенными напряжениями. В зависимости от природы диффундирующих кинетических единиц и от локализации диффузионного пути в структуре твердого тела принято различать ползучесть по Набарро — Херрингу, Коблу или Вертману. Зависимость скорости дефор- [c.89]

    Таким образом, можно утверждать, что на стадии предварительного набухания гранулы полимера практически сохраняют свою прочность. Этому факту можно дать следующую физическую интерпретацию. При набухании происходит изменение конформаций макроцепей сополимера (относительное перемещение, а также вращение звеньев и участков макроцепи). Конфигурация малых кинетических единиц (пространственное расположение атомов в молекуле) при этом остается неизменной. При равновесном набухании пространственная сетка сополимера вытягивается до пре дела без деформации химических связей в ней. Возникающие локальные напряжения целиком компенсируются изменением конформации макроценей сополимера. Если путем выпаривания убрать растворитель из гранулы, то цепи вернутся в прежнее положение и гранула примет первоначальные размеры. [c.329]

    Молекулярно-кинетические свойства связаны с самопроизвольным движением в системе кинетических единиц-молекул и возможным уровнем их локального концентрирования в единице объема и в меньшей степени — с химическим составом. К таким свойствам, называемым коллигативными, относят диффузию, поверхност1юе натяжение, осмотическое давление, упругость пара, температуры застывания и кипения. Определение и исследование указанных свойств позволяет наиболее полно оценить внутренние взаимодействия в системе, а также прогнозировать поведение системы при изменении условий ее существования. [c.18]

    Закрытая агрегированная и открытая цепочечная структуры сажи П805Э (ламповая сажа), наиболее широко применяемой в производстве электрощеток, показана на рис. 4-6. Вместо термина первичный агрегат иногда эта структура обозначается как кинетическая единица домен [4-16]. Частички сферической формы, которые составляют первичные агрегаты, не могут быть выделены из них, хотя предполагается, что они возникают до начала процесса агрегирования. [c.198]

    Релаксационный механизм Характерное время релаксации с, с Энергия активации Л- К Дж/моль Коэффициент Объем кинетической единицы к. см Линей ыв размёры кииетичбской единицы, нм [c.62]

    Как указывалось выше, механизм быстрой стадии физической релаксации эластомеров можно представить себе как процесс, связанный с подвижностью свободных сегментов. За время протекания быстрой стадии (доли секунды) микроблоки не успевают распадаться и ведут себя как целое. Перестройка же надмолекулярной структуры в целом происходит медленно под действием теплового движения и напряжения. Для микроблоков, если их считать кинетическими единицами процесса релаксации и вязкого течения, энергия активации должна быть на два-три порядка выше вследствие их громоздкости. Поэтому следует предпрд цть, как [c.64]

    Таким образом, медленная стадия физической релаксации мягкой компоненты свяаапа с двумя типами кинетических единиц. Один тип — это связанные сегменты, которым соответствует небольшая величина энергии активации, другой тип — микроблоки, которым соответствуют большие величины постоянных В. [c.65]

    Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура полимера непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц (сегментов), приводящих к изменению ближнего и дальнего флуктуационного порядка, т. е. надмолекулярной организации аморфного полимера. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего при некоторой температуре, называемой температурой стеклования Тс, структура полимера фиксируется. Отсюда следует, что в данном образце застеклованного полимера структура примерно та же, что у незастеклованного полимера в области стеклования. [c.83]

    Развитие концепции Кобеко п тео работах Волькенштейна и Птииына , Кувшинекого п Сидорови-ча . Волькенштейн и Птицын дали математическую трактовку идеям Кобеко для простейшей модели жидкости. Авторы ограничились моделью, в которой каждая кинетическая единица может принимать только два энергетических состояния (основное и возбужденное) и характеризоваться одним временем релаксации (вместо набора энергетических состояний и соответственно спектра времен релаксации для реальной жидкости). Возбужденное состояние в принятой модели можно представить как разрыв между кинетическими единицами при образовании дырки в жидкости. [c.86]

    Между температурой стеклования (размягчения) и энергией активации существует однозначная связь. Действительно, чем больше силы взаимодействия, тем более прочно закреплены на своих местах кинетические единицы, тем менее вероятны их переходы от одного равновесного положения в другое и тем больше. время релаксации, При заданном режиме охлаждения (нагревания) температурам стеклования (размягчения) различных полимеров соответствует одно и то же время релаксации т = onst. [c.92]

    В полимерах кинетическими единицами являются сегменты, молекулярная масса (и размеры) которых Ьбычно на два порядка больше, чем у простых жидкостей в преде]1ах одной цепи сегменты объединены в кооперативную систему движения сегментов в соседних цепях также скоррелированы. Вместе с другими особенностями строения полимеров это приводит к значительно большим величинам времен релаксации. Так, эластомеры при 20 °С характеризуются значениями т=10- —10 с. С понижением температуры т возрастает вплоть до значения 10 с при стандартной температуре структурного стеклования. Поэтому в полимерах динамическая регистрация упругого деформационного состояния практически реализуема-при ультразвуковых частотах при высоких [c.95]

    Соответствующий (рис. VIII. 3) пример и следующие из этого рисунка неожиданные цифры для низкой энергии активации (7 кДж/моль) и высокого предэкспоненциального множителя (то = 2 10 с) вынуждают делать предположение о малых.размерах (по сравнению с сегментами) кинетических единиц, [c.273]

    Вследствие гибкости макромолекулы принимают в процессе теплового двилсения различные пространственные формы, называемые конформациями. Чем большую эффективную гибкость имеет полимерная цепь, тем легче она свертывается в так называемый статистический клубок. В связи с этим в физике полимеров вводят понятие о сегменте полимерной цепи как мере ее гибкости или жесткости. Под сегментом понимается наименьший отрезок цепи, который проявляет гибкость. Следовательно, макромолекула состоит из большего или меньшего числа сегментов, ведущих себя как самостоятельные кинетические единицы. [c.16]


Смотреть страницы где упоминается термин Кинетическая единица: [c.312]    [c.216]    [c.57]    [c.58]    [c.60]    [c.63]    [c.65]    [c.67]    [c.77]    [c.84]    [c.167]    [c.169]    [c.244]    [c.273]   
Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.113 , c.293 ]




ПОИСК







© 2022 chem21.info Реклама на сайте