Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформационные упругая

    Уравнения (1.16), (1.17) описывают упруго-гравитационный режим фильтрации, при котором приращения удельных расходов вдоль координатных осей компенсируются деформациями водоносной толщи грунтов и изменением положения свободной поверхности потока. Если жидкость и водоносная толща несжимаемы, то р = О, и эти уравнения описывают жесткий гравитационный режим фильтрации. В напорном пласте = О, и тогда имеет место деформационный (упругий) режим фильтрации. [c.23]


    В первый период времени после начала опыта имеет место деформационный (упругий) режим фильтрации. Он проявляется в том, что расход воды, входящей в образец грунта сверху, оказывается большем расхода, выходящего из образца снизу. Разность этих расходов, обычно очень небольшая, уходит на компенсацию сжатия образца грунта и воды. При таком режиме фильтрации условие (11.31) не выполняется. [c.36]

    Деформационные упругость — свойство тела восстанавливать свои форму и размеры после прекращения действия внешних сил вязкоупругость — свойство тела рассеивать энергию при упругих деформациях пластичность — свойство твердых тел развивать остаточные деформации ползучесть —свойство твердых тел накапливать деформации при воздействии нагрузок. [c.113]

    Использование смазочного материала между шероховатыми поверхностями практически исключает адгезионную составляющую, и измеряемая сила трения обусловлена только деформационной составляющей. Разрущение фрикционных связей в соответствии с двойственной природой трения может иметь механический характер (упругое оттеснение, пластическое деформирование, микрорезание) и молекулярный (нарушение молекулярных связей на поверхности или в глубине тела). [c.224]

    Процесс упорядочивания сводится к такому перераспределению атомов водорода, при котором возникает определенная периодичность, т. е. дальний порядок в их расположении в основной матрице. Это сопровождается, в отличие от упорядоченных фаз растворов замещения, сильным изменением периода кристаллической решетки основной матрицы с ростом концентрации атомов внедрения. Принято считать [22], что искажение решетки носит упругий характер, а процесс упорядочивания, т. е. перераспределения атомов внедрения, приводит к релаксации внутренних напряжений. В пользу идеи о доминирующей роли деформационного взаимодействия свидетельствует плавный, почти линейный характер изотермы сорбции в области упорядоченной фазы. [c.115]

    Прирост напряжений при увеличении деформации характеризует деформационное упрочнение металла, т.е. с1а/(18= Е (тангенс угла наклона касательной к кривой растяжения). В пределах упругой деформации (1а/ё8 = Е (где Е - модуль Юнга). В области площадки Е = 0. По мере роста г модуль упрочнения изменяется по сложной (чаще по монотонно возрастающей) кривой, характер которой зависит от исходной структуры металла, формы и размеров образца, температуры испытаний, скорости деформации, схемы напряженного состояния и др. При соблюдении условия простого нагружения кривая упрочнения, построенная с использованием инвариантных величин а,- и (а,- и - интенсивность напряжений и деформаций) имеет один и тот же вид независимо от формы и размеров образцов, схемы напряженного состояния (одноосное или двухосное). Известно, что макропластическая деформация возникает в результате накопления пластических сдвигов, являющихся следствием инициирования, перемещения и [c.37]


Рис. 65. Составная модель упруго-пластического тела (а) и деформационная кривая этой модели (б). Рис. 65. Составная <a href="/info/1909859">модель упруго-пластического</a> тела (а) и <a href="/info/56309">деформационная кривая</a> этой модели (б).
    Деформационная способность полимерных материалов, обусловленная полностью обратимым изменением валентных углов и межатомных расстояний в полимерном субстрате под действием внешних сил, характерна для проявления упругих свойств. Температура, ниже которой полимерное тело может деформироваться под действием внешних сил как упругое, называется температурой хрупкости Гхр. Действие внешних силовых полей может быть представлено (рис. 3.3, а) как всестороннее сжатие, сдвиг и растяжение. Вместе с тем всякая конечная деформация полимерного материала проявляется, с одной стороны, как деформация объемного сжатия (или расширения), характеризующая изменение объема тела при сохранении его формы (дилатансия), а с другой, - как деформация сдвига, характеризующая изменение формы тела при изменении его объема (см. рис. 3.3, 5). В связи с этим реологическое уравнение состояния должно описывать как эффекты, связанные с изменением объема деформируемого тела, так и влияние напряжений на изменение его формы. В общем случае деформация проявляется в двух видах как обратимая и как необратимая. Энергия, затрачиваемая на необратимую деформацию, не регенерируется. [c.127]

    Анализ этих выражений показывает, что концентрация напряжений снижается с увеличением угла перехода р и уменьшением коэффициента деформационного упрочнения m (рис.5.10). Концентрация упруго-пластических деформаций с уменьшением m возрастает. [c.301]

    Деформационная теория пластичности анизотропного тела. Рассмотрим вариант теории упруго-пластического поведения анизотропного материала, в которой напряжения связываются С полными деформациями (или наоборот). Предположим, что мгновенная поверхность нагружения, отделяющая область чисто упругих деформаций от упруго-пластической области, задается с помощью квадратичной формы от напряжений в виде [c.296]

    Известно, что деформационное старение металла труб на тех участках трубопровода, где температура относительно высокая (I 400 С), протекает более интенсивно. Это объясняется тем, что при этой температуре прим ЙЫё атомы (Мп, N. С, Сг и др.) относительно легко мигрируют к дислокациям и уменьшают их энергию. Исходя из модели упругого взаимодействия, Коттрелл [1,3] показал, что число атомов п(1) в единице объема, мигрирующих к единице длины дислокации за время I из кристаллической решетки стали, содержащей первоначально По атомов растворенного элемента, равно [c.137]

    Это уравнение практически хорошо подтверждается для полимеров (рис. II. 13). Из наклона прямой определяется значение константы 5г, а при lgv = 0 находится значение константы Вь Данные для натурального каучука, приведенные на рис. II. 13, подтверждают, что механическое стеклование наблюдается в структурно-жидком состоянии полимера, причем низкотемпературная область I соответствует твердому стеклообразному состоянию, а области II и III — структурно-жидкому, в котором реализуется как упруго-твердая (//), так и высокоэластическая реакция на воздействие (III). В зависимости от частоты механических воздействий ширина области твердого деформационного поведения изменяется и при некоторой частоте Vh = с исчезает. Отсюда следует, что при очень медленных механических воздействиях с 0 10 с температура механического стеклования Гм.с полимера совпадает с температурой структурного стеклования Тс (при стандартной скорости охлаждения в несколько градусов в минуту), [c.98]

    Наконец, если некристаллический полимер является сеточным (или пространственно-сшитым) эластомером, то он характеризуется термомеханической кривой типа 2. Узлы пространственной сетки препятствуют относительному перемещению полимерных цепей. Поэтому при высоких температурах вязкое течение не наступает и эластомер не замечает температуры Гф.т. Температурная область высокой эластичности расширяется, и ее верхней границей становится граница химического разложения полимера. Такими деформационными свойствами обладают и сеточные полимерные материалы типа резин, которые необычны по сочетанию ряда свойств. Они способны восстанавливать свою форму после разгрузки, как и упругие твердые тела, но по другим свойствам близки к жидкостям и газам. Так, низкомолекулярные жидкости и резины по структуре — некристаллические тела. Их коэффициенты теплового расширения и сжимаемости близки между собой, но намного больше (на один-два порядка), чем у низкомолекулярных твердых тел. Коэффициенты их объемного термического расширения равны 3,6-10- К для газов, (Зч-5) 10 К для металлов, а для жидкостей и резины они имеют промежуточные значения и практически совпадают между собой и близки к (ЗЧ-б) 10 К . Коэффициенты сжимаемости равны 10 МПа- для воздуха при давлении 0,1 МПа (1 атм), 10 Па для металлов, а для жидкостей и резин они близки и на два десятичных порядка отличаются от металлов (10 3 МПа- ). [c.33]


    НОЙ формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра К (рис.2.7). Условием неустойчивости тела с трещиной является КЖкр (быстрое распространение трещины). [c.76]

    В разделе 5.2 дан анализ кинетики МХПМ и долговечности конструктивных элементов при упругих деформациях. За долговечность конструктивных элементов принималось время, в течение которого первоначальное эквивалентное напряжение достигает своего предельного значения, равного пределу текучести. Однако возникновение пластических деформаций не вызывает разрушения. После наступления текучести констрктивный элемент может сопротивляться действию внешних сил до тех пор, пока деформации (напряжения) не достигнут некоторого критического значения, вызывающего разрушение. В этом случае анализ долговечности значительно усложняется, поскольку кинетика МХПМ определяется двумя факторами напряжениями и деформацией. Кроме того, пластическая деформация, наряду с усилением коррозионного растворения металла, приводит к заметному деформационному утонению стенок оборудования. [c.314]

    Ауз = 5 и 7 м соответственно, для Sa Ava = 23 см" при переходе от газа к жидкости, а для Sea — 36 см". Как видно, чем меньше у сходственных молекул частота, т. е. упругость связи, тем сильнее ослабляет связь ван-дер-ваальсово взаимодействие. Изменяется при взаимодейств 1и и вероятность переходов, т. е. интенсивность полос. Нарушение первичной симметрии молекулы в результате взаимодействия ослабляет строгость правил отбора, в спектрах могут проявляться запрещенные частоты. В кристаллах поле симметрично распределенных зарядов может привести к снятию вырождения, например, в кристалле СОа снимается вырождение деформационного колебания V2 = 667 СМ и проявляются две частоты va 660 и 653 см". В спектре кристаллов могут проявляться также колебания решетки. Спектр молекул, изолированных в матрице (область менее 200—300 см" ), может отличаться от спектра свободных молекул, благодаря взаимодействию между ними и кристаллом матрицы, особенно для сильно полярных молекул. [c.178]

    Исходя нз теории упругости полимеров, В. А. Каргиным и Г. Л. Слонимским [191] разработана теория трех деформационных состояний стеклообразного, высокоэластичного и вязкотекучего. Температурные интервалы этих состояний зависят от размеров ССЕ, интенсивности внешнего воздействия (скорости нагрева) и других факторов. С целью удобства сопоставлении механической прочности различных НДС, находящихся ниже температуры текучести, предложены стандартные методы, с помощью которых определяют интервал хрупкости, дуктильности и пенетрацию. Поверхностное натяжение является одной из определяющих характеристик для форлМЫ ССЕ тех НДС, в которых обе фазы представляют собой жидкости или жидкость и газ. Поверхностное натяжение веществ находится в зависимости от сил ММВ в них. Поверхностное натяжение жидких тел 1а границе с воздухом сопоставимо с силами ММВ в объеме. Поэтому жидкость под влиянием поверхностного натяжения стремится принять такую форму, при которой ее поверхность при данном объеме будет наименьшей, т. е. сферической. Несмотря на более [c.146]

    При нагружении материала корпуса выше предела текучести в >пру-гопластической области происходит деформационное упрочнение [31, 59]. Кривые разрушения в упруго-пластнческой области достаточно точно описываются степенной функцией [31, 59]  [c.116]

    Установлены факторы механохимической повреждаемости и раскрыт механизм технологического наследования при производстве оборудования. В результате анализа кинетики МХПМ получены функциональные зависимости долговечности конструктивных элементов, изготовляемых упруго-пластическим деформированием, от величины остаточных напряжений и степени предварительной деформации, исходных механических свойств материала, уровня напряженности при эксплуатации и коррозионной активности рабочей среды. Предложен критерий оценки влияния предварительной пластической деформации и деформационного старения на охрупчивание сталей в рабочих средах. [c.5]

    Сформулированы и экспериментально обоснованы закономерности формоизменения заготовок и формирования повреждающих факторов при выполнении технологических операций, связанных с упруго-пластическим деформированием (правка, резка, гибка, калибровка, сборка и др.). Неоднородность напряженного состояния заготовок при упруго-пластическом деформировании вызывает возникновение остаточных напряжений и деформаций, интенсифицирующих процессы МХПМ, деформационного охрупчивания и старения сталей. Деформационное старение низколегированных и низкоуглеродистых сталей способствует сближению значений предела текучести и временного сопротивления, снижению характеристик трещиностойокости, малоцикловой и коррозионномеханической прочности. Склонность материала к деформационному старению оценивается по изменению отношения предела текучести к временному сопротивлению, отражающему основные механические и эксплуатационные характеристики. Дана количественная оценка и предложены технологические способы снижения отрицательных эффектов упруго-пластического деформирования, основанные на обеспечении принципов взаимозаменяемости базовых деталей и снижении остаточных напряжений и деформаций. [c.392]

    Теория постоянства энергии упругого деформационного искажения (Хубер, Мизес, Хенки). Недостаточная достоверность критерия накопленной энергии упругой деформации при гидростатическом сжатии или растяжении привела к идее вычитания гидростатической части из полной величины накопленной энергии. Таким образом, предполагается, что только энергия искажения формы тела W определяет критическое состояние напряжения. Для малых деформаций получим следующий критерий  [c.68]

    В зависимости от степени образования вязкоупругих деформаций результаты опытов при постоянной скорости нагруженпя могут существенно отличаться от результатов, полученных при постоянной скорости деформации. В области Гуковской упругости деформационные кривые совпадают, в линейной зоне вязкоупругого деформирования имеют одинаковую форму, но по мере увеличения о или е и выхода в нелинейную зону искривление кривых зависимостей о от i и гЕ от t уменьшается, и кривые расходятся так, как это показано на рис. 2.19. [c.83]

    В процессе развития науки о дисперсных системах отдельные ее разделы выделились в самостоятельные научные дисциплины теория броуновского движения, послужившая основой молекулярной и современной статистической физики развитие более общих представлеЕщй о природе растворов, которые включают в себя как частный случай у чение об истинных растворах низкомолекулярных веществ физико-химия полимеров и их растворов и, наконец, реология — наука о деформационных свойствах материалов, обобщающая учение о деформации (течении) жидкостей, упругих материалов (физико-химическая механика) и промежуточных по свойствам материалов, к числу которых относятся многие дисперсные системы. [c.6]

    В полимерах кинетическими единицами являются сегменты, молекулярная масса (и размеры) которых Ьбычно на два порядка больше, чем у простых жидкостей в преде]1ах одной цепи сегменты объединены в кооперативную систему движения сегментов в соседних цепях также скоррелированы. Вместе с другими особенностями строения полимеров это приводит к значительно большим величинам времен релаксации. Так, эластомеры при 20 °С характеризуются значениями т=10- —10 с. С понижением температуры т возрастает вплоть до значения 10 с при стандартной температуре структурного стеклования. Поэтому в полимерах динамическая регистрация упругого деформационного состояния практически реализуема-при ультразвуковых частотах при высоких [c.95]

    В соответствии с природой перехода полимера из высокоэла-стического деформационного состояния в упругое можно сформулировать следующие основные особенности механического стеклования  [c.98]

    Деформационные свойства ориентированных твердых полимеров (как и прочностные) отличаются рядом особенностей. Во-первых, ор 1ентированные материалы обладают анизотропией упругих свойств. Во-вторых, они обладают более высокими значениями предела вынужденной эластичности , величина которого тем [c.197]


Смотреть страницы где упоминается термин Деформационные упругая: [c.82]    [c.125]    [c.127]    [c.18]    [c.73]    [c.151]    [c.13]    [c.15]    [c.37]    [c.82]    [c.125]    [c.127]    [c.36]    [c.294]    [c.295]    [c.122]   
Энциклопедия полимеров Том 3 (1977) -- [ c.64 , c.206 , c.207 , c.561 , c.562 , c.569 ]




ПОИСК







© 2025 chem21.info Реклама на сайте