Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод-углеродная связь, вращение

    Одним из свойств простой углерод-углеродной связи является возможность относительно свободного вращения вокруг этой связи. Нетрудно представить себе, что, например, верхняя левая метильная группа в молекуле пропана, схематически изображенной на рис. 24.4, вращается относительно остальной структуры. Движения такого типа осуществляются в алканах при комнатной температуре с очень большой скоростью. В результате алканы с длинными цепочками постоянно совершают внутренние движения, приводящие к изменению их формы нечто подобное происходит с металлической цепочкой при встряхивании. [c.413]


    Конформационные превращения в молекуле алкана определяются соотношением между потенциальным барьером внутреннего вращения (/ ) вокруг углерод — углеродной связи и кинетической энергией теплового движения. Значение энергетического барьера Е< кТ (при комнатной температуре энергии теплового движения молекул — 3,5 кДж/моль) соответствует свободному внутреннему вращению. Если Е кТ, то внутреннего вращения вокруг углерод — углеродной связи не происходит, а имеют место крутильные колебания. Барьер внутреннего вращения в этане составляет 12 кДж/моль [27]. В свободных молекулах изобутана барьер внутреннего вращения групп СН( равен 15 кДж/моль. [c.24]

Рис. 5.5. Затрудненное вращение вокруг двойной углерод-углеродной связи. Вращение препятствует перекрыванию р-орбиталей и приводит к разрыву п-связи. Рис. 5.5. <a href="/info/1220514">Затрудненное вращение</a> вокруг <a href="/info/48478">двойной углерод-углеродной связи</a>. <a href="/info/575135">Вращение препятствует</a> перекрыванию р-орбиталей и приводит к разрыву п-связи.
Рис. 24.7. Схематическое изображение внутреннего вращения вокруг двойной углерод-углеродной связи в алкенах. Вращение одной части молекулы относительно другой приводит к умень-щению перекрывания р-орбиталей, образующих л-связь. Это затрудняет внутреннее вращение вокруг двойной углерод-углеродной связи. Рис. 24.7. <a href="/info/376711">Схематическое изображение</a> <a href="/info/56229">внутреннего вращения</a> вокруг <a href="/info/48478">двойной углерод-углеродной связи</a> в алкенах. Вращение одной <a href="/info/445072">части молекулы</a> <a href="/info/1623378">относительно другой</a> приводит к <a href="/info/1551245">умень</a>-щению перекрывания р-орбиталей, образующих л-связь. Это затрудняет внутреннее <a href="/info/761142">вращение вокруг двойной</a> <a href="/info/27827">углерод-углеродной</a> связи.
    При радикальной полимеризации конфигурация мономерного звена в растущей цепи фиксируется не в момент его присоединения к активному центру, а только после присоединения к макро-радикалу последующей молекулы мономера. Это связано с тем, что концевой углеродный атом, несущий неспаренный электрон, не имеет определенной конфигурации вследствие относительно свободного вращения вокруг концевой углерод-углеродной связи. Схематически процесс роста можно представить следующим образом  [c.25]


    Наибольшее перекрывание может быть достигнуто при параллельном расположении р-орбиталей именно это положение является энергетически наиболее выгодным, его нарушение требует затраты энергии на разрыв я-связи. Поэтому свободное вращение вокруг двойной углерод-углеродной связи отсутствует с важными следствиями отсутствия свободного вращения вокруг двойной связи мы познакомимся позднее. [c.16]

    Впервые в 1936 г. Питцер показал, что для согласования рассчитываемой энтропии этана с наблюдаемой надо принять, что существует барьер (около 13 кДж/моль или 3 ккал/моль), препятствующий вращению вокруг простой углерод-углеродной связи. Эта работа послужила исходной точкой для развития конформационных представлений, хотя фактически идею о существовании разных пространственных форм молекул с простыми связями высказал еще в 1890 г. Заксе на примере циклогексана. [c.28]

    Степень бокового перекрывания двух атомных 2/ -орбиталей,. а следовательно, и прочность я-связи будет максимальной, если два атома углерода и четыре атома водорода лежат строго в одной плоскости (т. е. если они копланарны), поскольку только в этом случае атомные р-орбитали полностью параллельны друг другу и могут давать максимальное перекрывание. Любое отклонение от копланарного состояния вследствие поворота вокруг 0-связи, соединяющей два атома углерода, приведет к уменьшению степени перекрывания и соответственно к снижению прочности л-связи система стремится, естественно, избежать таких отклонений. Появляется, таким образом, теоретическое оправдание для давно известного явления препятствия вращению вокруг двойной углерод-углеродной связи. Тот факт, что я-электроны распределены между двумя слоями (над и под плоскостью мо- лекулы), и их, следовательно, можно обнаружить за пределами оси углерод-углеродной связи, означает существование области отрицательного заряда, готовой для взаимодействия с любыми соединениями, отбирающими электроны (например, окислителями). Неудивительно поэтому, что реакции с такого рода соединениями наиболее характерны для двойной углерод-углеродной связи (ср. стр. 176), [c.25]

    Молекулы, имеющие одинаковое строение и различающиеся пространственной формой в результате вращения вокруг углерод-углеродных связей, имеют разную конформацию, их называют конформерами (конформационными изомерами). Хотя различия в конформации не отражаются в названиях веществ, вы все же должны быть знакомы с этим явлением. [c.19]

    Свободное вращение вокруг простой углерод-углеродной связи. Конформации. Торсионное напряжение [c.94]

    Насколько свободно вращение в молекулах этана для перехода из одной заторможенной конформации в другую Барьер в 3 ккал (12,56-10 Дж) не является очень высоким даже при комнатной температуре энергия столкновений достаточно велика, чтобы происходило быстрое взаимопревращение между заторможенными конформациями. Для большинства практических целей можно считать, что вокруг простой углерод-углеродной связи существует свободное вращение. [c.96]

    Энергия, необходимая для вращения вокруг углерод-углеродной связи в этане, называется торсионной энергией. Говорят, что относительная неустойчивость заслоненной конформации или любой промежуточной скошенной конформации возникает вследствие торсионного напряжения. [c.96]

    Превращение структуры I в II требует вращения вокруг двойной углерод-углеродной связи. Возможность выделения изомеров зависит от энергии, требуемой для вращения вокруг этой связи. п-Связь образуется в результате бокового перекрывания р-орбиталей, доли которых лежат над и под плоскостью о-орбиталей. Чтобы перейти от одного из этих бутенов-2 к другому, молекулу надо свернуть так, чтобы нарушилось перекрывание р-орбиталей, т. е. необходимо разорвать зх-связь (рис. 5.5). [c.147]

    Разрыв я-связи требует около 60 ккал (251,21-10 Дж) при комнатной температуре только незначительное число столкновений обладает достаточной энергией, и, следовательно, скорость взаимопревращения ничтожно мала. Следовательно, благодаря этому барьеру 60 ккал (251,21-10 Дж) существует затрудненное вращение вокруг двойной углерод-углеродной связи. 8 результате этого затрудненного вращения оказывается возможным выделить два изомерных бутена-2. Это и есть бутилены с т. кип. 1 и 4 °С. [c.148]

    В противоположность бензолу бутадиен нежесткая молекула, так как возможно вращение вокруг центральной углерод-углеродной связи (гл. 6). Обе плоскостные конфигурации бутадиена геометрически наилучшим образом приспособлены для взаимодействия р-орбит вдоль средней углерод-углеродной связи. Вращение вокруг последней уменыпает взаимодействие вплоть до нуля, когда оси двух р-орбит располагаются перпендикулярно друг другу. [c.115]

    Благодаря малому ковалентному радиусу атома фтора полная замена атомов водорода на фтор в молекуле парафинового углеводорода (в отличие от замены их на хлор или бром) не приводит к растягиванию и ослаблению углерод-углеродных связей вследствие появления пространственных затруднений. Наоборот, эти связи как бы прикрываются, экранируются со всех сторон атомами фтора, делаясь недоступными для атак различных реагентов Именно это позволило Саймонсу дать образное определение фтор углеродам — вещества с алмазным сердцем и в шкуре носорога Следует, правда, отметить, что замещение атомов водорода в мо лекуле парафина на фтор приводит к заметному увеличению по тенциального барьера вращения (6 кДж/моль) вокруг простой углерод-углеродной связи [1, с. 15 2]  [c.501]


    Общепринято сокращенное обозначение той бутановой конформации (тоансоидной, транс-Г, или скошенной гош- б ), в образовании которой участвует данная углерод-углеродная связь. При этом подразумевается, что данная связь С-С является центральной связью рассматриваемого бутанового сегмента. Таким образом, в алкане все связи С-С, вращение вокруг которых приводит к конформационным превращениям, получают свой индекс Г или в. [c.146]

    Как бь(ло указано в разд. 8.4, ч.1, при обсуждении способности атома углерода к образованию связей, двойная углерод-угперодная связь включает а- и я-составляю-щие. На рис. 24.7 показана геометрическая структура цис-алкеиа.. Расположение связей вокруг каждого атома углерода является плоским, т. е. ось углерод-углеродной связи и связи с двумя остальными группами (водородом или углеродом) находятся в общей плоскости. На рис. 24.7 наглядно показано, что вращение одной части молекулы алкена относительно другой ее части, происходящее вокруг двойной углерод-углеродной связи, должно быть затруднено. Такое вращение должно нарушать перекрывание между р-орбиталями, образующими л-связь, что приводит к ее разрыву. Затрудненное вра- [c.415]

    Две максимально различные но структуре и энергии конформации этана легко переходят одна в другую в результате вращения групп относи-тсльно углерод-углеродной связи. [c.236]

    Стереорегулярные полимеры возникают благодаря наличию асимметрического атома углерода в макромолекуле полимера. Это — стереоизомеры. Их строение схематически показано на рис. 3, где зигзагообразная основная цепь для наглядности помещена в одной плоскости. Легко убедиться, что вращение вокруг простых связей в основной цепи с учетом валентного угла между связями —С—С— не приводит к разупорядочиванию относительного расположения заместителей. Специальные методы синтеза приводят к получению изотактических макромолекул, когда заместители расположены по одну сторону плоскости, синдиотактических, когда заместители находятся по разные стороны плоскости, и атактических, когда заместители ориентированы нерегулярно. Взаимное отталкивание заместителей, изображенных на рис. 3, приводит к тому, что они смещаются относительно друг друга в пространстве н поэтому плоскость симметрии оказывается на самом деле изогнутой в виде спирали. Структура спиралей характерна не только для макромолекул с углерод-углеродными связями в основной цепи, но и для других видов макромолекул, в том числе и для биологически активных (например, двойная спираль ДНК). Различные стереоизомеры имеют и разные механические свойства, особенно сильно отличающиеся от свойств атактических полимеров того же химического состава. [c.12]

    Итак, большая длина цепных макромолекул прчводит к появлению у них гибкости. Гибкость ограничена взаимо йствием атомов и атомных групп, связанных с основной цепью. )то взаимодействие ограничивает свободу вращения вокруг углерод-углеродных связей в макромолекуле. Чем больше взаимодействие, тем выше барьер вращения и тем меньше гибкость макромолекулы. Гибкость макромолекул проявляется в характерной для полимеров зависимости свойств от температуры и обусловливает существование трех физических состояний полимера и особенности его кристаллической структуры. Наличие двух основных элементов структуры — макромолекул и их сегментов — обусловливает особенности надмолекулярной структуры и, в частности, существование флуктуационной сетки. Все это вместе делает для полимера наиболее типичной не чисто упругую или чисто вязкую (необратимую) деформацию, а деформацию вязкоупругую. [c.105]

    Если ионные интермедиаты в схемах (а) и (б) имеют достаточно большое время жизни для того, чтобы произошло вращение вокруг простой связи до наступления второй стадии элиминирования, то никаких специальных стерических требований к относительной ориентации связей С—Н и С—X в исходном соединении не выдвигается. Однако при согласованном (Е2) элиминировании (а) реакция протекает наиболее легко в том случае, если связи С—Н и С—X антиперипланарны , т. е. лежат в одной плоскости и направлены в противоположные стороны от общей углерод-углеродной связи. [c.228]

    Эти две формы и неопределенное число промежуточных между ними структур называются конформациями молекулы этана. Таким образом, под конформациями мы будем понимать, различные расположения одной и той же группы атомов в пространстве, которые могут переходить одно в другое без разрыва связей. Очевидно, что из двух изображенных конформаций заторможенная конформация более стабильна, поскольку в ней атомы водорода максимально удалены друг от друга (3,1 А) и любое, так называемое, несвязывающее взаимодействие между ними сведено к минимуму. В случае же заслоненной конформации они расположены ближе всего друг к другу (2,3 А, что лишь немногим меньше суммы их ван-дер-ваальсовых радиусов). Давно известный принцип свободного вращения вокруг просто углерод-углеродной связи в случае этана не нарушается. Как показывают расчеты, заслоненная и заторможенная конформации отличаются по энергии всего лишь на 3 ккал/моль эта разница в энергии достаточно мала и не препятствует свободному превращению одной формы в другую при комнатной температуре за счет энергии обычного теплового движения (вращательная частота при 25 С составляет приблизительно 10 2 в секунду). [c.23]

    Под действием фосфинов, например трифенилфосфина (СвНз), , эпоксиды отдают кислород, превращаясь в алкены. Реакция начинается с атаки оксиранового кольца фосфином (механизм Зм2). В результате вращения вокруг углерод-углеродной связи и уис-отщепления образуется алкен, кон- [c.451]

    Однако при очень тесном расположении атомов могут возникать реальные ограничения вращения вокруг простой углерод-углеродной связи. Этот вывод был подтвержден выделением двух, форм СНВгг—СНВгг при обычных температурах, хотя ранее допускалось, что такое разделение можно осуществить только при пониженной температуре, когда энергия столкновений между молекулами еще недостаточна для того, чтобы обеспечить взаимные превращения конформаций. [c.23]

    Метай, этаи, пропаи и их гомологи имеют тетраэдрическое строегше. Можно представить, что их углерод-углеродные связи образованы перекрьшаннем хр -гибридных орбиталей каждого из атомов углерода, а связь С-Н - перекрыванием лр -гибридной орбнтали углерода и Ь-орбнтали водорода (см. гл. 1). Длина С-С связи составляет 1,54 0,01А, а длина С-Н связи - 1,095 0,01А. Такая геометрия молекул алканов приводит к важным следствиям, углерод-углеродная с-связь обладает цилиндрической осью симметрии, т.е. сечение этой а-орбитали представляет собой круг. Такой тип симметрии а-связи допускает свободное вращение вокруг простой одинарной углерод-углеродной связи в алканах, поскольку ири вращении нерекрьшанне между -гибридными орбиталями соседних атомов углерода не нарушается. [c.343]

    Несколько более высокую энергию имеют скошенные конформацци (гош-конформации), которые легко возникают уже при комнатной температуре в результате вращения вокруг простых углерод-углеродных связей. [c.350]

    Решение. Для того чтобы осуществилось е-элиминированне, молекула должна иметь определенную конформацию другими словами, должно быть ограничено свободное вращение вокруг ряда углерод-углеродных связей. Это неизбежно влечет за собой повышение энергии активации процесса за счет понижения энтропии (увеличение упорядоченности) системы в активированном комплексе (АСакт = [c.222]

    Замещенные этапы. Давно известно, что вращение вокруг углерод-углеродной связи в этапе заторможено. Первым указанием на это послужил тот факт, что энтропия соединения оказалась ниже, чем ожидалосо на основании теоретических расчетов в приближении свободного вращения. Поэтому молекула [c.267]

    Рис, VIII. 6. Профиль энергии для вращения вокруг углерод-углеродной связи в этане. [c.269]

    Переход между конформерами ванны и твист-ванны пр( ходит без угловых деформаций — просто путем вращения круг простых углерод-углеродных связей. Такие конформац ные переходы, которые обычно отличаются низкими акт1 ционными барьерами, называют псевдовращением. [c.274]

    Различные расположения атомов, которые могут взаимно превращаться друг в друга путем вращения вокруг простых углерод-углеродных связей, называются конформащ1Ями. Конформация I называется заслоненной, а конформация П — заторможенной (промежуточные конформации носят название скошенных). [c.95]

    Однако некоторые физические свойства свидетельствуют о том, что вращение вокруг простой углерод-углеродной связи не совсем свободно существует энергетический барьер около 3 ккал/моль (12,56-10 Дж/моль). Потенциальная энергия молекулы минимальна для заторможенной конформации эта энергия возрастает при вращении и достигает максимума для заслоненной конформации (рис. 4.3). Большая часть молекул этана,естегтвенно, существу- [c.95]

    Без сомнения, эти формулы представляют различные структуры, поскольку ни перемещением, ни вращением вокруг углерод-углеродных связей эти структуры нельзя совместить. В структуре с прямой цепью (II) каждый атом углерода связан по крайней мере с двумя атомами водорода, тогда как в разветвленной структуре (III) один из атомов углерода связан только с одним атомом водорода можно заметить, что в разветвленной структуре (III) один атом углерода связан с тремя углеродными атомами, тогда как в структуре с прямойцепью (II) ни один из атомов углерода не связан больше чем с двумя другими углеродными атомами. [c.97]


Смотреть страницы где упоминается термин Углерод-углеродная связь, вращение: [c.82]    [c.416]    [c.488]    [c.488]    [c.332]    [c.61]    [c.391]    [c.343]    [c.418]    [c.931]    [c.1800]    [c.279]    [c.316]    [c.95]    [c.145]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вращение, вокруг углерод-углеродной связи

Свободное вращение вокруг простой углерод-углеродной связи. Конформации. Торсионное напряжение

Связи углерод-углеродные

Углерод связи

Энергия вращения углерод-углеродной связи



© 2025 chem21.info Реклама на сайте