Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рост цепи термодинамика

    Каждый из элементарных актов, в свою очередь, м. б. простой реакцией или состоять из нескольких простых реакций. Химизм элементарных актов в конкретной полимеризационной системе определяется природой ее компонентов и условиями проведения процесса. Инициирование и обрыв цепи в реальных системах, как правило, проходят в условиях, далеких от равновесных, и могут считаться практически необратимыми. Рост цепи, а также межцепной обмен при передаче цепи на полимер с разрывом (см. Передача цепи) обратимы и могут достигать равновесия в реальных условиях (см. также Термодинамика полимеризации). [c.479]


    Рассматривая термодинамику процесса роста цепи, Дейнтон выразил свободную энергию процесса превращения свободного мономера в звено полимера как [c.135]

    Образование полимеров из ненасыщенных или циклических мономеров путем ряда повторяющихся реакций присоединения зависит, подобно любой другой реакции, от выполнения двух условий реакция должна быть термодинамически возможной и должен существовать механизм реакции, посредством которого возможная реакция может осуществиться на деле. Для образования полимеров высокого молекулярного веса должно соблюдаться третье условие реакция роста, посредством которой осуществляется увеличение размера полимерной цепи, должна быть много быстрее, чем все конкурирующие реакции, ведущие к прекращению увеличения цепи. Термодинамика полимеризации и деполимеризации была рассмотрена в работе [1] целью настоящей главы является сравнение существующих путей реакции образования высокополимеров (см. также более ранние обзоры [2—5])..  [c.92]

    Введение понятия плейномер иногда обосновывают появлением зависимости большого периода, определяемого методом малоуглового рентгеноструктурного анализа, от условий кристаллизации О., начиная с нек-рой длины цепи, к-рую и принимают за нижний предел области плейномеров. Действительно, для низших членов гомологич. рядов величина большого периода зависит только от размера молекулы, увеличиваясь с ростом последней, но не зависит от условий кристаллизации. Начиная с нек-рой длины, определяемой химич. природой О., цепи приобретают способность складываться, причем размер складок (а следовательно и большой период) определяется не только длиной и гибкостью цепи, но и термодинамикой и условиями кристаллизации. Однако при определенных условиях (малая скорость кристаллизации температура, близкая к температуре плавления образца высокие давления использование узких фракций О.) можно закристаллизовать длинноцепочечные О. в выпрямленном состоянии [при этом образуются кристаллы толщиной>100 нм > 1000 А)]. Тогда величина большого периода, как и в случае низших гомологов, достигает размеров, соответствующих длине молекулы. [c.227]

    В последнее время появился ряд работ, в которых авторы подходят к разработке термодинамики растворов высокомолекулярных соединений с иной стороны. Так, Эйринг 1 склонен объяснить рост осмотического давления с ростом концентрации предположением о том, что длинная цепь высокомолекуляра состоит из ( сегментов, каждый из которых проявляет осмотическое действие, выступая как бы в качестве самостоятельной кинетической единицы. Это приводит к тому, что длинную цепь следует рассматривать как некоторую сумму отде.льных кинетических единиц, и поэтому основную роль играет не действительное, а эффективное число частиц растворенного вещества т, определяемое из уравнения [c.316]


    Таким образом, использование приемов и методов формальной химической кинетики при применении соответствующего математического аппарата в общем дает удовлетворительное совпадение между расчетными и экспериментальными данными. Это является важным доказательством принципиальной возможности использования метода формальной химической кинетики для описания поведения биологических систем. Однако степень адекватности таких математических моделей зависит от того, насколько полно учтены реакции метаболизма, протекающие в микробных клетках. Химическая кинетика не может быть рассмотрена в отрыве и без учета стехиометрических соотношений реагирующих компонентов и термодинамики. Поэтому если будут изучены все особенности реакций в микробных клетках, приводящих к увеличению биомассы популяции, а также все изменения в величинах констант скоростей реакции в цепях метаболических процессов, возникающие в ответ на увеличение биомассы популяции и изменения в составе культуральной жидкости, то принципиально возможно будет описать такое явление строго в терминах химической кинетики. Однако трудно представить, какое количество уравнений отдельных реакций потребуется в данном случае для описания такой системы и сколько машинного времени потребуется для расчета того или иного параметра. Можно полагать, что такая математическая модель потеряет все преимущества математического моделирования и в общем-то будет бесполезной в практическом отношении. С другой стороны, если пытаться описать рост популяции лишь незначительным числом избранных кинетических уравнений конкретных изученных реакций метаболизма и сводить к ним весь процесс, то всегда [c.95]

    Термодинамические характеристики полимеризации (АС, АН, А8) имеют большое значение для понимания влияния структуры мономера па процесс полимеризации. Далее, зная АН, можно путем подбора соответствующего теплового режима процесса поддерживать на заданном уровне Н и и получать полимер желаемого молекулярного веса. Величины АС, АН и Дб" в полимеризации представляют собой разность свободных энергий, энтальпий и энтропий соответственно одного моля мономера и одного моля повторяющихся звеньев в молекуле полимера. Термодинамика полимеризации определяется только стадией роста, так как стадии ипициирования и обрыва цепи являются единичными актами, тогда как на стадии роста цепи идет большое число реакций присоединения. [c.226]

    Процессы ионной полимеризации в последнее время нашли широкое применение в промышленности и научной практике для синтеза различных гомо- и сополимеров, привитых и блок-сополимеров, модификации макромолекул и т. д. Подобное расширение области применения ионных катализаторов в процессах образования и превраш,е-ния макромолекул связано с большими успехами, достигнутыми в понимании природы активных центров ионной полимеризации, механизма образования ионов, ионных пар, активных компонентов и т. д.. термодинамики и кинетики превращения ионов, роли среды, механизма роста цепи и пр. Однако несмотря на большие успехи мы еще очень далеки от полного понимания механизма ионной полимеризации. Если в области радикальной полимеризации, благодаря основополагающим работам Н. Н. Семенова по общей теории цепных процессов и работам многочисленного отряда ученых всего мира по кинетике и. механизму этого типа полимеризации, известны основные законы и уравнения, описывающие эти закономерности, то в области ионной полимеризации, к сожалению, исследования находятся еще в самой начальной стадии. В настоящее время мы располагаем рядом превосходных изданий по радикальной полимеризации на русском языке. В качестве примера можно назвать монографию С. X. Багдасарьяна Теория радикальной полимеризации (изд-во Наука , М., 1966) и книгу К- Бэмфорда и др. Кинетика-радикальной полимеризации виниловых соединений (ИЛ, М., 1961), тогда как по ионной полимеризации положение значительно хуже. В последние годы вышли лишь две монографии, посвященные ионной полимеризации (П. Плеш, Катионная полимеризация , изд-во Мир , 1966 Б. Л. Ерусалим-ский, Ионная полимеризация полярных мономеров , изд-во Наука , 1970). В обеих монографиях хотя и освещаются основные достижения в этой области полимерной науки, однако они имеют в основном описательный характер. [c.5]

    Первые фундаментальные работы по термодинамике полимеризации были выполнены Дейнтоном и Айвином [П в 1948 г. Дальнейшее развитие этих работ можно найти в обзорной статье [2], опубликованной ими десять лет спустя. Эти авторы выделили стадию роста цепи в процессе полимеризации, подчеркнув ее определяюш,ую роль. На этой стадии процесса путем ряда последовательных реакций постепенно образуется макромолекула [c.109]

    Детальное исследование термодинамики переходов спираль — клубок проведено а простейших моделях — на олигорибоадени-ловых кислотах [111, 112]. При низких pH олигоаденины образуют двойные спирали, начиная с тетрануклеотида. Возможные модели спаривания тринуклеотидов, предложенные в работе [111], показаны на рис. 8.22. Вообш,е говоря, число разных двойных спиралей с п связанными парами при данной степени полимеризации N равно (N — п1) . Переходы изучались по гипохромному эффекту при 2650 А для М от 6 до 10. Образование двойной спирали из двух цепей характеризуется двумя константами—константой нуклеации р и константой роста спирали S. Константа s = exp(—AH/RT + kS/R). Константа равновесия для перехода две цепи двойная спираль равна [c.518]


    Попытки теоретического объяснения роста пластинок со сложенными цепями из разбавленных растворов и зависимости длины складок от температуры кристаллизации предпринимались до сих пор в двух направлениях. Петерлин и Фишер [108] подошли к проблеме с позиций термодинамики и заключили, что наблюдаемые толщины пластинок, выращенных из раствора, соответствуют кристаллическим формам, имеющим минимальную свободную энергию. Они не касались специфически складываемых цепей, а исходили из того, что молекулы в кристалле определенной толщины будут фактически иметь правильные складки, длина которых должна соответствовать толщине кристаллов. Вклад в величину свободной энергии пластинки, даваемый поверхностями, образованными изгибами сложенных молекул, стремится увеличить ее толщину для объяснения его компенсации Петерлин и Фишер постулировали, что с ростом толщины увеличивается плотность энергии, а это обусловлено влиянием термических колебаний молекулярных цепей. На основании расчетов эти исследователи предсказали широкий минимум в распределении свободной энергии при конечной небольшой толщине пластинки. Результаты не были представлены ими в форме, удобной для сравнения с экспериментальными данными, но, принимая во внимание грубость принятых приближений, в настоящее время едва ли можно ожидать, что совпадение будет более чем полуколичественное. Однако было предсказано, что в случае кристаллизации при более высоких температурах кристаллы должны быть толще. Тот факт, что длина складок при прокаливании необратимо растет, не является несовместимым с предложенной термодинамической теорией. Как показали Франк и Този [28], более серьезные возражения может вызвать то, что предсказанный минимум свободной энергии, взятой как функция длины складок, является очень широким. Действительно, этот минимум не столь уж значителен по сравнению с разностью свободных энергий полимера в кристаллическом состоянии и в растворе, которая соответствовала бы переохлаждению на несколько десятков градусов поэтому маловероятно, чтобы наблюдаемые длины складок были наиболее стабильными. Лауритзен и Гофман [68] и Прайс [113] избрали другой подход, при котором наблюдаемые длины складок объясняются с точки зрения кинетических, а не термодинамических факторов. Такое рассмотрение проблемы должно быть, по-видимому, более многообещающим оно приводит к предсказаниям, которые лучше согласуются с экспериментальными данными. [c.441]


Смотреть страницы где упоминается термин Рост цепи термодинамика: [c.480]    [c.30]    [c.351]    [c.229]    [c.236]    [c.78]    [c.345]    [c.354]    [c.12]    [c.351]   
Анионная полимеризация (1971) -- [ c.107 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Рост цепи



© 2025 chem21.info Реклама на сайте