Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи макромолекулах

    Со структурной точки зрения у белков различают первичную, вторичную, третичную и четвертичную структуры. Под первичной структурой, как и в случае пептидов, понимается точная последовательность отдельных аминокислотных остатков в макромолекуле. Вторичная структура определяется тем, что вследствие образования внутримолекулярных водородных связей макромолекулы предпочитают находиться в определенных конформациях (чаще всего это а-спираль — белковая цепь свернута в правовинтовую спираль, а расположенные друг [c.192]


    Температура плавления полиуретанов довольно высока (не ниже 160 °С) вследствие образования водородных связей между макромолекулами за счет амидных групп. При нагревании до температуры выше 220°С полиуретаны начинают, разлагаться. [c.85]

    В этой главе собраны работы, посвященные исследованию физических свойств воды в различных модельных и природных дисперсных системах, а также вблизи активных групп макромолекул и биополимеров. Сопоставление данных, полученных разными методами и для разных объектов, приводит к общему выводу об отличиях свойств воды в граничных слоях от ее свойств в объеме. Характер этих изменений существенным образом зависит от природы воздействующих на воду групп и поверхностей. Наиболее сильное влияние на структуру воды оказывают заряженные центры и полярные группы, способные к образованию водородных связей с молекулами воды. При этом оказываются важными эпитаксиальные эффекты — число и характер расположения активных центров на твердой поверхности. [c.6]

    Современные методы физико-химического анализа не позволяют, к сожалению, классифицировать водородные связи молекул воды с веществом торфа по энергии. В частности, в соответствующей области ИК-спектров наблюдается широкая полоса поглощения. Но феноменологическое разделение по энергии водородных связей молекул воды с органической частью торфа можно дать с определенной степенью достоверности, исходя из химического состава и структуры макромолекул отдельных компонентов. [c.64]

    Полипептидные цепи способны образовывать а-спиральную конформацию (рис. 6.10). Такая конформация характеризуется максимальным насыщением водородных связей вдоль оси спирали. Боковые заместители аминокислотных звеньев направлены наружу и находятся вне спирали. Дополнительным фактором, фиксирующим а-спиральную конформацию макромолекулы белка, является образование внутрицепных дисульфидных (цистиновых), сложноэфирных и солевых связей. Возникновение двойных и тройных спиралей обусловлено интенсивными межмолекулярными взаимодействиями между ними. Такие спиральные одно- и многоцепочечные макромолекулы являются примером стержнеобразных жестких цепей, характеризующихся /ф < 0,63. [c.344]

    Одпако чаще встречаются системы, в которых между цепями в той или другой степени имеются более прочные (большей частью водородные) связи. Преодоление их обычно уже не так легко осуществляется тепловым движением при комнатной температуре. Растворение облегчается, если молекулы растворителя могут образовывать подобные же или более прочные связи с макромолекулам, полимера. Сольватация макромолекул полимера как при таких, так даже и при более слабых взаимодействиях играет важную роль в процессах набухания и раствореиия. Но если такого взаимодействия не происходит или интенсивность его недостаточна, то этим кладется предел возможному в данных условиях набуханию и такой набухший полимер может находиться в состоянии динамического равновесия с данным растворителем (ограниченное набухание). Так, желатин в холодной воде набухает ограниченно. (Ограничение способности к набуханию может вызываться и другими причинами). [c.600]


    Битуминозные угли представляют собой твердые плохо растворимые вещества, структура которых, состоящая в основном из ароматических соединений, до сих пор изучена далеко не полностью. Можно ожидать, что установление строения угля позволит разработать новые процессы его эффективного использования. Выяснению химической природы угля препятствует, однако, его низкая растворимость, обусловленная следующим а) уголь представляет собой комплекс поперечно связанных макромолекул б) уголь стабилен за счет наличия прочных водородных связей, особенно в случае связывания за счет фенольных групп в) силы физического притяжения, обусловленные высокой степенью ароматизации угля, дают дополнительный связующий эффект. [c.301]

    Описанная структура полимера ведет себя подобно коагуляционной структуре. Сходство в поведении этих структур заключается в том, что для них характерны химические связи внутри частиц и на порядок меньше межчастичные взаимодействия. С увеличением полярности макромолекул уменьшается их гибкость, а для межмолекулярных взаимодействий становятся характерными все три типа сил Ван-дер-Ваальса. Наличие таких функциональных групп, как 0Н, —СООН, —ЫНг, обусловливает возникновение более прочных водородных связей. С ростом межмолекулярного притяжения полимер превращается в более твердое, менее эластичное и даже хрупкое вещество, теряющее плавкость и растворимость. Полимеры с химическими связями между макромолекулам (пространственные) нерастворимы и неплавки при нагревании. По свойствам они соответствуют конденсационным структурам. [c.391]

    Наличие в них химических связей, сильно отличающихся энергиями, когда атомы в цепях макромолекул соединяются химическими связями, имеющими энергии порядка сотен кДж/моль, а макромолекулярные цепи связываются друг с другом молекулярно-поляризационными или водородными связями с энергиями до 30 кДж/моль. 2. Гибкость цепей, обусловленная вращением звеньев. [c.33]

    Типичными полярными и нейтральными боковыми радикалами обладают Ser, ys, Thr, Arg, Gin и Thr. Они способны образовывать внутри- и межцепные водородные связи. Эти звенья могут располагаться в макромолекуле белка как внутри, так и на поверхности глобулы. Звенья Asp и Glu, как правило, находятся также на поверхности частиц белков. Формирование вторичной структуры белка зависит как от особенностей первичной структуры, так и от внешних (влажность, pH, температура) условий. [c.342]

    НИЮ водородных связей между отдельными макромолекулами. Температура плавления таких полиамидов, как правило, выше температуры термического разрушения полимера. [c.450]

    С увеличением полярности боковых заместителей возрастает и потенциальный барьер, препятствующий свободному вращению атомных фупп, что приводит к повышению жесткости макромолекул из-за усиления их взаимодействия. При этом роль боковых заместителей еще более возрастает, если они способны образовывать различного рода водородные связи. [c.82]

    Ответ. Температура перехода в вязкотекучее состояние обусловлена интенсивностью внутри- и межмолекулярного взаимодействия в полимере. Макромолекулы поливинилового спирта агрегируются с образованием интенсивных (до 40 кДж/моль) водородных связей. Межмолекулярное взаимодействие в полиакрилонитриле определяется преимущественно диполь-дипольным взаимодействием между С>4-группами, энергия которого значительно меньше (до 20-25 кДж/моль). Поэтому для перевода первого полимера в вязкотекучее состояние требуется нагрев до более высокой температуры. [c.133]

    Вторичная структура макромолекул этих полимеров фиксируется системой внутри- и межмолекулярных водородных связей. [c.289]

    Ответ. Для этого случая алхимическое правило "подобное растворяется в подобном" несправедливо целлюлоза способна лишь ограниченно набухать в воде. Это определено в основном следующими факторами относительной жесткостью макромолекул целлюлозы высокой плотностью когезии как воды, так и целлюлозы, обусловленной интенсивными водородными связями. [c.293]

    Если в звеньях макромолекул имеются атомы, вызывающие образование водородных связей, то полимер приобретает высокую прочность, теплостойкость, твердость, газонепроницаемость.  [c.30]

    Энергия водородных связей возрастает с понижением температуры и увеличением степени ориентации отдельных звеньев соседних макромолекул относительно друг друга. [c.30]

    Водородные связи между макромолекулами полимера затрудняют диффузию газов в пленки и переход полимера из твердого в эластическое состояние. [c.284]

    Полиакрилонитрил представляет собой твердый белый порошок. Полимер хотя и имеет линейную структуру макромолекул, но не размягчается при нагревании и не переходит в высокоэластическое состояние. Это явление можно объяснить полярностью нитрильных групп, их частым расположением в цепях макромолекул, заметно увеличивающим межмолекулярное сцепление вследствие возникновения водородных связей между отдельными макромолекулами. [c.334]

    Вследствие малого размера гидроксильной группы этот сополимер не лишен способности к кристаллизации. Между участками соседних макромолекул, образующих кристаллиты, возникают водородные связи, обусловленные присутствием гидроксильных групп. Этим объясняется большая прочность пленок и нитей, изготовленных из продукта гидролиза сополимера этилеиа и винилацетата, по сравнению с прочностью таких же изделий из полиэтилена. Одновременно с этим улучшается растворимость сополимера в некоторых органических растворителях и появляется способность к ограниченному набуханию в воде. [c.513]


    Очевидно, что этот дефицит должен увеличиваться с уменьшением молекулярной массы и уменьшаться с ростом полярности полимера или при возникновении дополнительных взаимодействий (типа водородных связей) между соседними макромолекулами. [c.227]

    Это различие обусловлено тем, что величина теплоты плавления, получаемая при калометрических измерениях, определяется исходной степенью кристалличности системы, тогда как значение АЯд, рассчитываемое по уравнению (4), соответствует предельному случаю полностью кристаллического полимера. Более высокие значения теплот плавления ПА-16, рассчитанные для систем полимер — спирт, дают основания высказать предположение о реализации более активного взаимодействия (обусловленного, например, возможностью образования водородных связей) макромолекул полимера со спиртами, чем с углеводородами. Теплоты плавления ПА-16, рассчитанные по понижению Гпл полимера в присутствии углеводородов, дают значения, весьма близкие к значениям, найденным из данных ДТА. Так, например, в цетане, являюш,емся фактически аналогом боковой цепи полимера, значения АН, найденные двумя методами, совпадают, что свидетельствует об одинаковом характере взаимодействия боковых метиленовых групп полимера друг с другом и с молекулами растворителя. [c.155]

    Известно, что каждая частица вещества в отсутствие внешних силовых полей находится под воздействием двух конкурирующих энергетических факторов теплового движения и межмолекулярного взаимодействия. При нагревании вещества тепловое движение молекул и их ассоциатов становится интенсивнее, в результате чего возрастают среднестатистические расстояния между частицами. Так как все виды межмолекулярного взаимодействия (диполь-дипольное, индукционное, дисперсионное, водородная связь и т.п.) ослабевают обратно пропорционально шестой степени расстояния между взаимодействующими частицами, то очевидно, что при нафсвании полимера происходит существенное уменьшение межмолекулярного взаимодействия и повышение подвижности макромолекул. [c.123]

    Параллельность изотерм в координатах а—р ро для различных образцов не нарушается и для других температур сорбции. С изменением температуры меняется лишь общий наклон кривых, причем коэффициент к возрастает для температуры 90 °С до 0,80. Это обстоятельство дает возможность рассчитать энергию активации процесса сорбции по механизму смешения. Расчет дает значение около 3 кДж/моль, что действительно свидетельствует о взаимодействии первично сольватирован-ных (с образованием водородных связей) макромолекул целлюлозы с водой главным образом за счет 1ван-дер-ваальсовых сил. [c.100]

    Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 . Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот. В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

    В конце 1970-х годов А. А. Кричко были обобщены представления о строении органического вещества угля как о самоассоциированном мультимере с трехмерной пространственной структурой [67[. В соответствии с этой концепцией органическая масса угля представляет собой набор макромолекул и олигомеров различного состава, соединенных между собой связями невалентного характера, среди которых основную роль играют алектронодонорно-акцепторные взаимодействия, включая водородные связи. Отдельные структурные блоки могут обладать разным набором участков, проявляющих электронодонорные и электроноакцепторные свойства. Относительно непрочные валентно-химические связи типа связей в эфирных и метиленовых мостиках также характерны для углей, но они находятся внутри объединенных в мультимер структурных единиц. [c.65]

    Исходя из представлений, изложенных в /1,2/, следует ожидать, что любой макроскопический образец жидкого алкана, по существу, представляет собой гигантскую неупорядоченную макромс пекулу, строение которой варьирует в ходе теплового движения. Разделим объем И, занимаемый жидким алканом, ка малые элементы объема Л/, достаточные, чтобы в них могла помещаться одна молекула. Множество элементарных событий реакций переноса водородных связей в объемах можно рассматривать как элементарные события мономоле-кулярной реакции, приводящей к локальным изменениям состояния макромолекулы. [c.164]

    По свойствам полиуретаны имеют много общего с полиамидами. Линейным полиуретанам, как и полиамидам, свойственна нысокая прочность, обусловленная большим количеством водородных связей, возникающих между карбонильными и иминнымп группами соседних макромолекул. По мере увеличения длины углеводородных цепей, разделяющих полярные группы в макромолекулах полиуретана, уменьшается его жесткость и прочность и снижается температура плавления кристаллитов. Температуря плавления полиуретанов (и полиамидов) с нечетным числом метиленовых групп между полярными звеньями ниже температур плавления ближайших полимергомологов. содержащих четное число метиленовых групп в углеводородных цепочках (рис. 119). [c.456]

    Ответ Полимерный субстрат хлопчатобумажной ткани - целлюлоза - относится к полужесткоцепнь[м полимерам Подвижность макромолекул этого полимера ограничена также интенсивными межмолекулярными водородными связями. Поэтому разгладить смятую хлопчатобумажную ткань можно двумя способами или поместив ее между двумя плоскими плитами и приложив к ним сжимающее усилие, или после увлажнения разгладить ткань горячим утюгом, т е. приложив небольшое усилие, но при повышенной температуре. Пары воды пластифицируют полимер, ослабляя межмолекулярные контакты, способствуя тем самым увеличению подвижности макромолекул это приводит к снижению времени релаксации. Глажение сухой хлопчатобумажной ткани на холоду требует очень длительного времени, так как Тр при этом велико. Для сокращения времени глажения ткань увлажняют и нагревают, что обусловливает снижение ip. [c.131]

    Поливиниловый спирт относится к сравнительно небольшой группе синтетических полимерных соединений, хорошо растворимых в воде, гликолях, глицерине и в то же время обладаюш,их высокой стойкостью к действию большинства универсальных органических растворителей. Особенно ценна высокая масло-, бензо- и керосиностойкость поливинилового спирта, удачно сочетающаяся с высокой упругостью пластифицированного поли-.мера (пластификаторы—глицерин или гликоли) и со способностью его образовывать бесцветные прозрачные, светостойкие пленки и нити, легко формоваться в изделия методом литья под давлением. Пленки и изделия из поливинилового спирта отличаются высокой поверхностной твердостью и низкой хладотекучестью в нагруженном состоянии. Несмотря на присутствие пластификатора в эластичных пленках, они обладают хорошей прочностью, особенно при растяжении ( 600 кг1смР ) и истирании, превышающей прочность резин. Газонепроницаемость пленок из поливинилового спирта в 15—20 раз (в зависимости от степени пластифицирования) превышает газонепроницаемость вулканизованной пленки натурального каучука. Такая прекрасная газонепроницаемость и высокая температура стеклования поливинилового спирта обусловлены возникновением водородных связей между звеньями соседних макромолекул  [c.284]

    Феноло-формальдегидные полимеры содержат гидроксильные группы, которые не принимают участие в реакции поликонденсации. Эти гидроксильные группы полиметиленфенолов вступают в реакции, характерные для гидроксильных групп низкомолекулярных фенолов, но сетчатая структура макромолекул полимера, возникнснение водородных связей между макромолекулами и соседними звеньями, нерастворимость полимера затрудняют проникание реагирующих веществ к отдельным звеньям макромолекул. [c.386]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Соединения включения образуются двумя или несколькими разными веществами, когда молекулы одних веществ играют роль хозяина , а других — роль гостей . Последние размещаются между молекулами или макромолекулами вещества-хозяина в полостях, между слоями, или в каналах структуры. Такая структура возникает в процессе образования соединения включения путем связывания молекул вещества-хозяина нодородными связями или уже существует в готовом виде, например в полимерах. Молекулы-гости располагаются в полостях вещества-хозяина не свободнее, но и не теснее, чем позволяют ван-дер-ваальсовские радиусы. Они попадают в окружение такого большого числа молекул основного вещества-хозяина, что энергия их связи достигает сравнительно большой величины, а именно 5—10 ккал/моль, повышаясь в отдельных случаях до 20 ккал/моль. Сосредоточение ван-дер-ваальсовских и водородных связей в структуре твердого вещества, повышение их роли до роли основного структурообразующего фактора— явление очень распространенное в области твердых веществ, многие из которых представляют собой молекулярные соединения— аддукты того или иного вида. Заметим, что соединений включения не образуют ни ионные соединения, в частности соли, ни металлы, в структуре которых преобладают ненаправленные связи. [c.24]

    При отвердевании атомных соединений одни ковалентные межатомные связи разрываются, а другие возникают, и в результате перегруппировки атомов и целых атомных групп образуются макромолекулы данного твердого вещества. При этом может происходить агрегация макромолекул по мере их образования связями Ван-дер-Ваальса, а часто наряду с ними и водородными связями, т. е. идет собственно процесс отвердевания данного вещества. При тех достаточно высоких температурах, при которых обычно затвердевают атомные соединения, одновременно протекает термическая диссоциация отвердевающего вещества, далеко не всегда обратимая. Поскольку энергия межатомной связи велика, диссоциация отвердевающего вещества завершается соединением ее продуктов в ином порядке, чем в исходных молекулах или макромолекулах. В результате в условиях отвердевания получаются сложные смеси изомерных молекул, смеси полимерана-логов. [c.38]

    Спиральную конфигурацию макромолекулы принимают если в их состав входят гидро ксильные или другие группы которые могут вступать в отно сительно сильное внутримоле кулярное взаимодействие, в частности, путем образования водородных связей. Последнее [c.39]

Рис. 11. Макромолекула ДНК а —схема строения б — пара водородных связе между полкнуклеотидными Слоями на схеме а такие пары связей показаны вертикальными стержнями Рис. 11. Макромолекула ДНК а —схема строения б — <a href="/info/598774">пара водородных связе</a> между полкнуклеотидными Слоями на схеме а такие пары связей показаны вертикальными стержнями

Смотреть страницы где упоминается термин Водородные связи макромолекулах: [c.581]    [c.68]    [c.308]    [c.443]    [c.581]    [c.379]    [c.34]    [c.55]    [c.287]    [c.447]    [c.447]    [c.450]    [c.66]    [c.40]    [c.186]   
Биохимия Том 3 (1980) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте