Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота парообразования температуры

    Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. На рис. 68 представлена зависимость температур плавления и кипения в ряду Н2О—НгЗ—НгЗе—НгТе от молекулярной массы соединений. В рассматриваемом ряду с ростом молекулярной массы обе характеристики закономерно увеличиваются. Резкое отличие свойств воды от свойств ее аналогов обусловлено увеличением средней молекулярной массы агрегатов (Н20) за счет ассоциации молекул Н2О вследствие образования водородных связей. Если бы вода не была ассоциированной жидкостью, она имела бы температуру плавления не [c.140]


    Теплота испарения. Также как теплопроводность и теплоемкость, оказывает косвенное влияние на скорость испарения топлив. При значительной теплоте парообразования температура топлива заметно понижается и скорость испарения уменьшается. Теплота испарения зависит от давления и для углеводородов и нефтепродуктов уменьшается с увеличением молекулярной массы и температуры кипения (табл. 11). При прочих равных условиях теплота испарения уменьшается при переходе от непредельных углеводородов и аренов к цикланам и алканам. Повышенная теплота испарения непредельных и аренов объясняется их ассоциацией. Разность [c.36]

    Способность к ассоциации проявляют аммиак, спирты, пероксид водорода, гидразин, серная кислота и многие другие вещества. Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. Ассоциация приводит к изменению растворяющей способности. Часто возможность растворения вещества связывают с его способностью образовывать водородные связи. [c.102]

    Конденсация. Процесс, обратный кипению, называется конденсацией. Конденсация протекает при постоянных температуре и давлении, сопровождаясь вьщелением скрытой теплоты парообразования. Температура конденсации так же, как и температура кипения, зависит от давления. С понижением давления она понижается. [c.16]

    Значения теплоты парообразования, температуры конденсации, плотности и энтальпии насыщенного водяного пара в зависимости от абсолютного давления приведены в табл. 1. [c.7]

    Большая сложность пузырькового кипения по сравнению с конвекцией без изменения агрегатного состояния обнаруживается при рассмотрении факторов, влияющих на механизм обоих процессов. В то время как для описания теплообмена в однофазной жидкости используют вязкость, плотность, теплопроводность и удельную теплоемкость, для описания процесса пузырькового кипения требуются еще и другие характеристики. Необходимо ввести поверхностное натяжение, скрытую теплоту парообразования, температуру насыщения, плотность жидкости и пара и пр. Как и при обычной конвекции, следует учитывать также конфигурацию канала и скорость потока. Кроме этого, необходимо знать свойства металла, шероховатость поверхности и присутствие адсорбированного газа, которые также влияют на теплообмен при кипении. [c.147]


    Процесс, обратный кипению, называется конденсацией. Конденсация протекает при постоянной температуре и сопровождается выделением скрытой теплоты парообразования. Температура кон- [c.16]

    К теплофизическим свойствам теплоносителей относятся плотность, теплоемкость, теплопроводность, теплота парообразования, температура кипения и температура плавления.. [c.7]

    При постепенном повышении температуры исходной двухфазной жидкой смеси достигается точка, в которой суммарное давление раг паров углеводорода и Н2О становится равным или несколько большим заданного внешнего давления, т. е. раг Р, тогда начинается выкипание системы, продолжающееся до тех пор, пока к ней подводится тепло, компенсирующее скрытую теплоту парообразования перегоняемых веществ. Состав паровой фазы, например, по Н2О представится выражением [c.83]

    А1 — средняя разность температур в °С г—теплота парообразования в ккал/кг. [c.244]

    Температура в С Абсолютное давление в ата Теплосодержание жидкости в ккал/кг Теплота парообразования в ккал/кг Удельная теплоемкость жидкости в ккал/кг °С Удельный вес Удельный объем Теплота парообразования в ккал/м  [c.304]

    Сколько можно получить влажного водяного пара давлением 5 атс при использовании тепла обжиговых газов колчеданных печей, если газы из парового котла выходят с температурой 100° С. Расчет произвести на 1 т 42-процентного колчедана при условии полного выгорания серы в нем все цифровые данные (теплоемкости, теплоты парообразования и т, п,) брать из табли i при расчете учесть теплопотери обжиговой печью в количестве 12% [c.345]

    Теплота парообразования Ьу моторных топлив зависит от их фракционного состава и температуры. С повышением температуры она понижается. [c.105]

    Для определения теплоты парообразования ио уравнению Клапейрона—Клаузиуса необходимо дополнительно располагать уравнениями для плотности или удельного объема жидкости на линии насыщения левой пограничной кривой и зависимостью давления насыщения от температуры. Плотность насыщенной жидкости вдоль левой пограничной кривой обычно задается в виде функции р [ (Т). Аналитическая зависимость давления насыщения от температуры обычно задается уравнением вида п р =-- I (Т). Дифференцируя это уравнение по температуре, находим аналити- [c.17]

    Определив из уравнений (1.83)—(1.85) значения р, р" и dp/dT при заданной температуре насыщения, теплоту парообразования определяют непосредственно из уравнения Клапейрона—Клаузиуса  [c.51]

    Если необходимо определить теплоту парообразования при заданном давлении насыщения р, то следует сначала из уравнения (1.84) найти температуру насыщения и затем использовать уравнение (1.86). [c.51]

    Производная от давления насыщения по температуре, необхо-димая для определения теплоты парообразования, имеет вид [c.53]

    Количество теплоты, необходимое для превращения 1 кг жидкости, нагретой до температуры кипения, в 1 кг сухого насыщенного пара, называют теплотой парообразования. С увеличением давления теплота парообразования уменьшается. [c.33]

    Величина скрытой теплоты парообразования нрп нормальной температуре кипения уменьшается с увеличением молекулярного веса, как показано в табл. III-8. [c.196]

    Снижение температуры произошло за счет доли испарившейся воды X, имеющей теплоту парообразования г, [c.146]

    Для индивидуальных углеводородов и моторных топлив теплота парообразования уменьшается с увеличением молекулярного веса и температуры кипения. При одном и том же молекулярном весе углеводородов наибольшие значения теплоты парообразования имеют ароматические и ацетиленовые, наименьшие — парафиновые и олефиновые нафтеновые углеводороды занимают промежуточное положение. Углеводороды изомерного строения каждого класса имеют более низкую теплоту парообразования, чем углеводороды нормального строения [14]. [c.45]

    Среди соединений, нашедших применение в качестве компонентов автомобильных топлив, наиболее высокую теплоту парообразования имеют спирты. Понижение температуры во впускном трубопроводе за счет более высокого значения теплоты парообразования спиртов примерно в 3 раза больше, чем при испарении углеводородных топлив. Однако фактическое понижение температуры при испарении спиртов в двигателе еще больше, так как для их сгорания требуется меньше воздуха, чем для углеводородных топлив (см. табл. 9). [c.46]

    Теплота парообразования (называемая также скрытой теплотой испарения) — есть количество тепла, которое надо затратить, чтобы 1 кг жидкости, находящейся при тевшературе кипения, превратить в сухой насыщенный пар при той же температуре. При переходе 1 кг сухого насыщенного водяного пара в жидкость выделяется также же количество тепла (скрытая теплота конденсации). [c.15]

    В таблицах сухого насыщенного пара (по давлениям) в первом вертикальном столбце приводятся значения давлений, а по горизонтальным строчкам против каждого значения давления даются соответствующие этому давлению значения температуры, удельных объемов, плотностей, теплосодержаний (энтальпии) воды и водяного пара, теплоты парообразования и др. [c.18]


    При абсолютном давлении паров толуола р = 0,15 МПа из табл. 5 приложения имеем температуру кипения толуола 4ип = = 123 °С и скрытую теплоту парообразования толуола = = 354,5 кДж/кг..  [c.169]

    Через 20 лет после Хендерсона Бернал и Фаулер [4] опубликовали о воде статью, которая, возможно, остается до настоящего времени наиболее важной из всех ноявивщихся. К 1933 г. гексагональная структура льда была установлена благодаря рентгеновским методам исследования, форма и размеры молекул воды были известны в результате спектроскопических исследований, и ее обычная электронная конфигурация была полностью выяснена. Бернал и Фаулер показали, что при температурах, не слишком превышающих температуру замерзания, для мелкомасштабных взаимодействий воду можно рассматривать как имеющую своего рода нарушенную структуру льда. Они смогли объяснить качественно и часто полуколичественно, каким образом свойства молекул определяют тот замечательный ряд физических свойств, который так поразил Хендерсона. Приблизительно тетраэдрическое распределение зарядов в треугольной молекуле с двумя положительными центрами зарядов (доноры водородной связи) и двумя отрицательными зарядами (акцепторы водородной связи) было достаточным для того, чтобы объяснить высокие диэлектрическую проницаемость воды, поверхностное натяжение, теплоту парообразования, температуру плавления и множество других свойств. Эти короткие заметки, конечно, не могут дать полного обзора ряда новых интерпретаций, предложенных в этой замечательной статье. Безусловно, некоторые предположения Бернала и Фаулера оказались ложными и были вскоре опровергнуты. Однако основной подход, примененный в этой работе, стал фундаментом дальнейших исследований. [c.82]

    Путем экстраполяции, исходя из аддитивности, вычислено, что полное замещение на в аммиаке вызывает увеличение теплоты парообразования, температуры кипения и температуры тройной точки на 6,25 кал молъ 0,055° и 0,118° соответственно. [c.62]

    В. А. Киреев разработал методы вычисления свойств веществ из параметров фазовых (давление пара, температуры кипения) и химических (теплоты, энтропии, функции Гиббса) равновесий, которые широко применяются у нас и за рубежом. В недавно вышедшей монографии [8794] эти исследования получили дальнейшее развитие и обобщение. М. X. Карапетьянц разработал систему методов сравнительного расчета фи-зико-химических свойств и параметров процессов [9251], показав связь между этими методами и вытекающими из их системы новыми видами сопоставлений, использовав как ранее описанные, так и рекомендованные им закономерности (см., нанример, работу [92521, посвященную периодической системе элементов и методам сравнительного расчета). Эти способы вычисления нашли широкое распространение, в частности, для прогноза и проверки значений термодинамических характеристик веществ, при составлении справочников и т. д. В качестве примера укажем на работы [4065, 4172, 4247, 4322, 4774, 4780, 4850, 5380, 5427, 55461 в рамках настоящего обзора этот перечень легко по меньшей мере удвадцатерить. В. М. Татевский на основании установленных им закономерностей в геометрических конфигурациях молекул составил расчетные схемы, охватывающие целые гомологические ряды и позволяющие определить самые разнообразные свойства веществ (мольный объем, плотность, теплоту парообразования, температуру кипения, давление пара, теплоты образования и другие) [8659, 86601. [c.72]

    Здесь Сгт и С,к — средние удельные теплоемкости пара и жидкости, Дж/(кг-К) 11 и /н< — температуры поступающих пли уходящих пара и уКидкости, К /ц — температура насыщения пара, К г — удельная теплота парообразования, Дж/кг. [c.122]

    Обычным низкокипящим компонентом в смеси является вода, теплота парообразования 1 кг которой всегда значительно больше, чем у ВКК, вследствие чего энтальпия ее насыщенного пара при мепыпей температуре оказывается намного больше энтальпии насыщенного нара ВКК, находящегося при более высокой температуре. Поэтому иногда, чтобы сохранить обычный вид тепловой диаграммы, на которой линии энтальпий паровой фазы идут книзу слева направо, на оси абсцисс откладываются концентрации [c.318]

    Пример 19,Требуется определить коэффициент теплоотдачи inaipa тр.ихлор-ьтилена, коиденсирующегося при нормальном давлении на стенках трубок конденсатора диаметром 30/25. пм, длиной 2000. нм. Температура насыщения три-.хлорэтилена при нормальном давлении t = 87° С. Скрытая теплота парообразования / = 58 ккал кг. Средняя температура поверхности конденсации равна [c.96]

    Пример 20. Для проектирования воздушных конденсаторов на дистиляцион-ной станции глицерина требуется определить коэффициент теплоотдачи а конденсирующихся глицериновых паров к стенкам вертикальных кондеисаторов. Теплота парообразования г=170 ккал/кг у=П75 кг/м /. = 0,26 ккал/м час Конденсация происходит в вакууме при температуре приблизительно 100—120 С. j. = 0,001 кг сек/м -, высота охлаждающей стенки (задано Н = 0,455 м средняя температура пара t = 135° С средняя температура стенки t 25° С  [c.98]

    Для факельных трубопроводов, в том числе для факельного ствола, имеющих ограниченные диаметры, впрыск ингибитора в защищаемое пространство в виде мелкодисперсной распыленной жидкой фазы или паров не представляет большого труда. В качестве ингибитора применяют жидкие вещества, имеющие большую плотность, низкую температуру испарения, наибольшую теплоту парообразования, малую вязкость и малый коэффициент поверхностного натяжения н др. Наиболее эффективным и химически активным ингибитором большинства углеводородо-воздушных пламен является тетрафтордибромэтан (фреон 114Вч). [c.226]

    Здесь RO — плотность насыщенного пара в кг/дм при температуре насыщения ТС= 273,15 К R — теплота парообразования в кДж/кг при температуре насыщения ТС. Эти величины должны быть объявлены глобально. Если термогазодинамические расчеты выполняются в области сильно перегретого пара, то постоянными энтальпии и энтропии можно просто задаться. [c.34]

    Теплота парообразования нормальных парафинов уменьшается с увеличением температуры и давления и достигает нуля в критической точке. У изопарафинов теплота нарообразованпя несколько [c.196]

    Хоуджен и Ватсон (Hougen and Watson) [254] предложили метод расчета теплоты парообразования как функцию средней температуры кипения, молекулярного веса и плотности. Для случая, когда сама плотность известна недостаточно точно, этот метод требует уточнения. Для расчета теплоты парообразования при давлении, отличном от атмосферного, Ватсон [255] предлагает метод, основанный на следующем уравнении  [c.197]

    Теплота парообразования воды (или теплота конденсации водяного пара) при 100° С приблизительно составляет г = 540 ккал1кг. Из изложенного следует, что для нагрева 1 кг воды или водяного пара от температуры до температуры потребуется затратить тепла [c.15]

    В заключение рассмотрим последовательность вычислений пда дгпбт80дд -мости определить теплоту napofiSpMpBaHML нефтепродукта, имея в виду, что теплота парообразования (или конденсации) 1 кг нефтепродукта при данной температуре г° С вычисляется как разность между теплосодержанием паров и теплосодержанием жидкости для этого продукта, т. е. [c.23]

    Выделение больших количеств тепла обусловливает потребность в больших количествах хладоагента, а следовательно, и в значительно больших мощностях для его циркуляции важную роль играет равномерное распределение хладоагента. При охлаждении кипящей жидкостью от величины разности температур между газом и хладоагентом зависит — понизится ли температура в реакционном объеме сразу либо вначале увеличится, а потом снизится. Доршнер подчеркивает преимущества охлал<дения кипящей жидкостью. Во-первых, к ним следует отнести то, что высокие значения теплоты парообразования позволяют отводить большие количества тепла этому способствует также высокий коэффициент теплообмена между стенкой и кипящей жидкостью. Во-вторых, это равномер- [c.344]


Смотреть страницы где упоминается термин Теплота парообразования температуры: [c.414]    [c.36]    [c.65]    [c.96]    [c.85]    [c.10]    [c.14]    [c.15]    [c.17]    [c.53]    [c.199]   
Справочник по разделению газовых смесей (1953) -- [ c.41 , c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Парообразование

Парообразования теплота зависимость от температуры

Парообразования, теплота влияние температуры

Принцип соответственных состояний теплоты парообразования при нормальной температуре кипения

Температуры при равных значениях теплоты парообразования

Теплота от температуры

Теплота парообразования при нормальной температуре кипения

Теплота парообразования уравнение зависимости от температуры

Теплоты испарения (парообразования) и возгонки. Температуры и теплоты плавления

Удельные теплоты парообразования (г) некоторых неорга- нических и органических соединений при различных температурах

Чена метод расчета теплоты парообразования при нормальной температуре кипения



© 2025 chem21.info Реклама на сайте