Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Феррит чугунах

    Свойства чугуна зависят от формы входящего в его состав графита, а также от структуры металлической основы (перлит, феррит, мартенсит и т. д.). Обычно в сером чугуне графит выделяется в виде пластинок, поэтому при растяжении или [c.139]

    Углерод присутствует в сплавах железа в трех формах связанный в твердом растворе (феррите), в карбидах и в виде графита Определение содержания различных видов углерода в сталях и чугунах основано на их различных физических и химических свойствах и их реакциях в растворах электролитов. [c.29]


    Серый чугун образуется при медленном охлаждении он состоит из кристаллических зерен чистого железа, называемого ферритом, и чешуек графита (рис. 19.2). Как белая, так и серая разновидности чугуна хрупки, причем хрупкость первого объясняется тем, что его основной составной частью является хрупкий цементит, а второго тем, что входящий в его состав вязкий феррит ослаблен рассеянными в нем мягкими чешуйками графита. [c.547]

    Мн/м , а при сжатии токсичных и взрывоопасных газов для более низких давлений, особенно при больших диаметрах цилиндров. Структура чугуна в цилиндрах должна быть перлитной. Следует избегать цементит-ной структуры, как излишне твердой, отличающейся хрупкостью и способствующей износу поршней и поршневых колец. Феррит допускается лишь в малых количествах, так как, будучи мягким, значительно снижает износоустойчивость и ухудшает прочность чугуна. Твердость по Бринелю материала цилиндров требуется в пределах НВ 79—241. [c.326]

    Кремний очень сильно влияет на процесс формирования структуры отливок как в ходе затвердевания, так и при структурных изменениях в твердом состоянии. Исследованиями распределения кремния между фазами в белом чугуне установлено, что при обычных скоростях охлаждения заготовок он практически целиком концентрируется в матрице (феррите). Увеличение содержания кремния в доэвтектических белых чугунах от 0,05 до 0,78% приводит к повышению твердости и сопротивления изнашиванию. [c.53]

    Исследованием низкоуглеродистых (2,54—2,62% С) белых чугунов с содержанием 1,01—1,11% Мп установлено, что в цементите содержание марганца составляло 1,60—1,79%, в феррите 0,63— 0,69%, т. е. значение коэффициента распределения было в пределах 2,56—2,63. [c.55]

    Коррозия серых чугунов, сопровождающаяся растворением феррита, относится к структурноизбирательному типу. Механизм коррозии серых чугунов заключается в том, что феррит постепенно почти полностью переходит в раствор и подвергавшаяся коррозии деталь в конце концов оказывается состоящей только из углеродистого скелета (графит и немного цементита), пространство внутри которого заполнено вместо зерен феррита рыхлыми продуктами коррозии. Механическая прочность такой детали незначительна чугунную трубу, например, можно проткнуть карандашом. Этот вид коррозии, наблюдаемый в основном у бо-13ТЫХ графитом чугунов, известен также под названием г])афи-тнзация . [c.170]

    Исследования белых чугунов с содержанием 0,09—1,21% Мо показали, что молибден полностью сосредотачивается в карбидной фазе в феррите он не обнаружен. Износостойкость серого чугуна при введении 1,5% Мо увеличивается в 16 раз. [c.74]


    ЖАРОСТОЙКИЙ ЧУГУН — чугун, отличающийся жаростойкостью. Стоек против интенсивного окисления и роста (см. Рост чугуна) на воздухе и в др. газовых средах при повышенной т-ре. Используется с 20-х гг. 20 в. Ж. ч. (табл.) подразделяют на серый чугун (с графитом пластинчатой или шаровидной формы), белый чугун (с эвтектическими или заэвтектическими карбидами) и легированный чугун, напр, алюминиевый, кремнистый и хромистый с ферритной (см. Феррит), перлитной [c.430]

    Микроструктура серого чугуна, нетравленого. Белый фон —феррит, черные пятна— чешуйки графита. (ХЮО). [c.548]

    Микроструктура ковкого чугуна на фотографии виден феррит (светлый фон) и сферические частицы графита. Нетравленый образец. (ХЮО). [c.548]

    Относительный метод ультразвукового структурного анализа получил широкое применение в заводской практике и внесен в ГОСТ 5639—65 Сталь. Методы выявления и определения величины зерна и ГОСТ 6032—75 Сталь. Методы испытания на межкристаллитную коррозию аустенитных, аустенитно-феррит-ных и аустенитно-мартенситных коррозионно-стойких сталей . Ультразвуковой структурный анализ некоторых материалов, например серых и высокопрочных чугунов, можно проводить и путем измерения скорости распространения ультразвуковых колебаний. [c.68]

    Путем присадки некоторых элементов даже в очень небольших количествах (сотые доли процента) можнО получить модифицированный чугун, имеющий мелкодисперсный графит в-, перлитной металлической основе Твердость, прочность и износостойкость чугуна определяются строением металлической основы перлитный чугун более тверд, более прочен и более-износостоек, чем ферритный. Феррит-ный чугун пригоден только для изготовления неответственных деталей. [c.47]

    Микроструктура высокопрочного чугуна с шаровидным графитом показана на рис. 2-22,в, где отчетливо видны шаровидные включения графита, окруженные небольшими светлыми, участками ферр ита. Вокруг феррита располагается перлит. [c.51]

    СИЛАЛ [от лат. 81](1с1иш) — кремний и англ. а (1оу) — сплав] — чугун, легированный кремнием вид кремнистого чугуна. Используется с начала 20 в. Отличается жаростойкостью и стойкостью к росту (см. Рост чугуна). Структура его металлической основы — ферритная (см. Феррит), количество перлита в пей не должно превышать 20%. Ферритная структура обусловливается наличием в чугуне крелшия. Различают С. (табл.) с пластинчатой (марки ЖЧС-5,5) и шаровидной (марки ЖЧСШ-5,5) формами графита. С. с шаровидной формой графита получают модифицирование.ч чугуна магнием. В нем может быть и графит пластинчатой формы (пе более 15%). Для снятия внутренних напряжений С. с шаровидной формой графита подвергают термической обработке. Жаростойкость С. с пластинчатой формой графита (определенная но увеличению массы в граммах на 1 поверхности в час за 150 ч испытания при заданной т-ре) составляет 0,2 (т-ра 800° С), 10,0 (т-ра 900 С) и 20,0 (т-ра 1000° С), а С. с шаровидной формой графита соответственно 0,05 0,20 и 1,0. Рост С. с пластинчатой и [c.376]

    Модифицирующие материалы вводят (0,1—0,8, иногда до 1%) в жидкий чугун, вследствие чего улучшаются форма и распределение графита, структура металлической основы и, следовательно, повышаются его мех. св-ва. У серого модифицированного чугуна перлитная (см. Перлит в металловедении) или сорбитная (см. Сорбит) металлическая основа с мелким, завихренным, равномерно распределенным графитом пластинчатой формы. У модифицированных высокопрочных и ковких чугунов может быть ферритная основа (см. Феррит), у них высокие пластические св-ва. Структура легированных и термически обработанных М. ч.— бейнитная (см. Бейнит), трооститная (см. Троостит), мартенситная (см. Мартенсит) или аустенитная (см. Аустенит) — в зависимости от количества и состава легирующих материалов или от режима термообработки. Осн. элемент, определяющий хим. состав М. ч.,— кремний. Влияние остальных химических элементов учитывают, исходя из содержания кремния и углерода. Содержание кремния п сером М. ч. должно быть несколько ниже критического , т. е. [c.833]

    Г рафитизаци я— один из видов коррозии, наблюдаемый в основном у богатых графитом серых чугунов. В некоторых агрессивных средах феррит чугуна растворяется, а графит остается неразрушенным, в результате чего деталь оказывается состоящей из углеродистого скелета (графит и немного цементита), который внутри заполнен рыхлыми продуктами коррозии. [c.21]

    Чугун в природных водах и почве вначале корродирует с ожидаемой нормальной скоростью, но в конечном итоге срок его службы заметно больше, чем стали. Кроме значительной толщины металла, принятой для чугунных конструкций, преимущество чугуна обусловлено тем, что он состоит из смеси ферритной фазы (почти чистое железо) и чешуек графита, а в некоторых водах и почвах продукты коррозии цементируют графит. Благодаря этому конструкция (например, водопроводная труба), хотя и полностью прокорродировала, может иметь достаточную прочность, несмотря на низкую пластичность, и продолжать функционировать при рабочих давлениях и напряжениях. Этот тип коррозии называют графитизацией. Он наблюдается только у серых чугунов (или у ковких чугунов, содержащих сфероидальный графит), но не у белых чугунов (цементит + феррит). Графити-зацию можно воспроизвести в лаборатории, выдерживая в течение недель или месяцев серый чугун в очень сильно разбавленной, периодически сменяемой серной кислоте. [c.123]


    Не ниже 906° С при выплавке чугуна образуется феррит, который непосредственно соединяется с углеродом, образуя карбид железа или цементит формулы РсзС. Карбид железа образуется также на поверхности стальных изделий при нагревании их до соответствующей температуры в присутствии угольного порошка, соды и других углеродсодержащих продуктов. Процесс этот называется цементацией. Цементированные изделия так же, как и азотированные, приобретают поверхностную твердость (например, оси, рельсы и др.). В последнее время цементацию стали производить, нагревая стальные изделия в присутствии светильного газа с обязательным удалением освобождающегося водорода (аналогично процессу азотирования). [c.361]

    В белых чугунах с 0,03—0,54% Сг отношение соедржа ия хрома а карбидах к содержанию его в феррите колеблется незначительно и в среднем составляет 5 1. Чем ближе белый чугун находится к юстоянию равновесия, тем больше хрома содержится в карбидной )азе. При постоянном количестве углерода отношение содержания крома в цементите к среднему его содержанию в белом чугуне снижается при увеличении содержания хрома. [c.57]

    Церий обладает значительной способностью стабилизировать цементит. В белом чугуне отношение содержания церия в феррите и карбидах составляет 10 1. При его содержании менее 0,02% наблюдается увеличение размеров зерен, а при повышении концент-раппи до 0,06% происходит заметное измельчение зерна структу-ры. Тормозя распад вторичного и эвтектоидного цементита и содействуя образованию компактного углерода отжига в процессе термообработки, церий увеличивает стойкость белого чугуна при высоких температурах, резко снижая содержание серы, что само по себе улучшает жаростойкость чугуна. К тому же церий хорошо дегазирует металл, образуя тугоплавкие окислы, которые в случае образования сплошных плотных пленок могут обладать защитными свойствами. [c.72]

    Сферографитовый феррит-ной структуры 2,31 0,16-0,32 Чугун, нагретый ири 950°С в течение 2 ч [c.368]

    На чугунной станине кислотоупорного насоса (рис. 50) при помоп[и чугунного фланца 3 укреплен на болтах корпус насоса, изготовленпь.и из ферросилида. Массивный консольный вал 6 надежно центрируется на шарикоподшипниках 9. Роль добавочного подшипника для вала, в непосредственной близости от рабочего колеса насоса, выполняет сальник 7, Часть вала, соприкасающаяся с кислотой, защищена ферро- силидовой втулкой 8. Рабочее колесо закреплено на валу при помощи шпонки и натяжной гайки /, запрессованной в головку из ферросилида. [c.112]

    В, Fe /Fe +0,771 В. Жидкое Ж. неограниченно растворяет А1, Си, Мп, Ni, Со, Si, Ti, хорошо растворяет V, Сг и Pt, ограниченно-Мо, Sn, С, S, Р, As, Hj, Nj, 02,не растворяет Pb, Ag, Bi. С углеродом образует твердые р-ры внедрения-феррит и мартенсит с а-Ре, аустенит с у-Ре. В железа сплавах углерод прнсутствует также в внде графита и цементита Pej (см. табл.). В зависимости от содержания С в Ж. различают мягкое Ж. (<0,2% С), сталь (0,2-1,7% С) н чугун (1,7-5% С). [c.140]

    Единственное исключение из этой закономерности превращение ОЦК -Ре-> ГЦК 5-Ре, происходящее при нагреве выше 911°С, которое лежит в основе термической обработки стали и чугуна. Однако при 1394°С происходит нормальное превращение ГЦК у-Ре -> ОЦК 5-Ре, связанное с термическим расщеплением Зй/ -оболочки. Уникальный переход обусловлен наличием у Ре четьфех не спаренных Зс/- орбиталей, определяющих магнитный. момент на ато.ме Ре, и двух расщепленных Зй -орбиталей. Перекрытие таких Зй -оболочек и обусловливает ОЦК структуру а -Ре при те.мпературах ниже 911°С. Переход а -Ре у-Ре связан Ь ферро.магнитным состояние 1 железа при температурах ниже 768°С и антиферромагнитным состоянием а (Р)-Ре в интервале температур 768-911°С. При 911°С происходит переход антиферро-магнитного ОЦК нм (Р)-Ре в парамагнитное ГЦК у-Ре и, следовательно, это превращение не представляет исключения из общей последовательности переходов. [c.35]

    Различают К. ч. гл. обр. химически стойкие (кислото-, щелочестойкие и др.), жаростойкие, эрозионностойкие против коррозионного истирания. Коррозионная стойкость чугуна в значительной море определяется формой графита. Чугун с шаровидной формой графита, как и чугун с тонкодисперсными включениями пластинчатого графита, вследствие более высокой плотности металлической основы более коррозионно-стоек, чем чугун с грубыми выделениями пластинчатого графита. Повышение дисперсности и числа структурных составляющих металлической основы чугуна способствует понижению коррозионной стойкости. Графит шаровидной формы в К. ч. (нирезистах, ферросилидах, чугалях) получают модифицированием жидкого чугуна спец. добавками (металлическим магнием, сплавом 10— 15% Мд с никелем, сплавами редкоземельных элементов и комплексными модификаторами). Чугуны с ферритной (см. Феррит) или перлитной (см. Перлит в металловедении) структурой без последующих превращений в твердом состоянии (при прочих равных условиях) более коррозионностойки, чем чугуны с ферритоперлитной структурой. Широко распространены К. ч. низколегированные (напр., хромистые чугуны, кремнистые чугуны, хромоникелевые), высокохромистые, аустенит-ные, высококремнистые, кремнемолибденовые и алю.чиниезые чугуны. Низколегированные чугуны (табл. 1) используют для изготовления деталей, эксплуатируемых при повышенных т-рах в газовых средах. Хромистые и кремнистые К. ч. характеризуются высокой жаростойкостью и сопротивлением росту (см. Рост чугуна). Детали из этих чугунов эксплуатируют при т-ре до 1000° С. Хромоникелевые чугуны (табл. 2 па с. 630) стойки в расплавленных щелочах и их водных растворах. И таких чугунов изготовляют котлы для плавки каустика, ребристые трубы. Высокохромистые чугуны (хромэксы) применяют в пищевой и хим. нром-сти. Аустеиитные (нержавеющие) чугуны отличаются [c.629]

    Сплавы системы Ре-РезС подразделяются на стали и чугуны в зависимости от содержания в них углерода. К первым относятся сплавы, содержание углерода в которых не превышает 2,03 %. Структура сталей определяется содержанием в них углерода. В момент полного затвердевания структура сталей, содержащих менее 0,1 % С, чисто ферритная ( -феррит). Полное затвердевание сталей, содержащих 0,1-0,16% С, заканчивается образованием ферритно-аустенит-ной структуры, содержание -феррита в которой изменяется от О (точка J) до 100 % (точка Н). Стали с содержанием углерода 0,16-0,51 % имеют ферритно-аустенитную структуру, образование которой связано с расходом в процессе охлаждения первоначально образовавшегося (5-феррита. Сплавы, содержащие 0,51-2,03 % С, имеют чисто аустенитную структуру, образование которой начинается с первых моментов затвердевания жидкого металла. [c.181]

    Нагревательный элемент, применяемый при концентрировании серной кислоты, в целях придания ему устойчивости против коррозии изготовляется из кремнистого чугуна (ферросилита) с содержанием до 14,3% Si и 0,75—0,85% С или из сплава, называемого гастеллой Д (Hastelloy D) (8—11% Si 3—5% u, остальное Ni). Ферро силит впол не соответствует предъявляемым требованиям, однако он отличается значительной хрупкостью. [c.232]

    АЗОТИРОВАНИЕ, нитрирование— насыщение поверхностного слоя металлических изделий азотом. Азотированные слои отличаются повышенными твердостью, износостойкостью, пределом усталости (см. Усталость материалов) и коррозионной стойкостью в различных средах (остальная толща изделий сохраняет свойства исходного материала). А. подвергают термически (см. Закалка, Отпуск в термообработке) и механически (включая шлифование) обработанные новерхности изделий из сплавов железа углеродистых сталей, легированных конструкционных сталей, инструментальных сталей, нержавеющих сталей, жаропрочных сталей, высокопрочных магниевых чугунов, а также из некоторых цветных тугоплавких металлов. Перед А. обработанную поверхность тщательно очищают и обезжиривают. А. поверхностей изделий из с п л а -вов железа проводят, используя герметически закрытые муфельные печи, гл. обр. в среде газообразного аммиака (КНз) при т-ре 500— 700° С (прочностное А.). В этом интервале т-р происходит диссоциация (распад) аммиака по реакции КНз -> ЗН N. Выделяющийся атомарный азот адсорбируется (см. А дсорб-ция) поверхностью металла и диффундирует (см. Диффузия) в кристаллическую решетку металла, образуя различные азотистые фазы. В системе железо — азот при т-ре ниже 591° С последовательно возникают такие фазы а — твердый раствор азота в альфа-желеае (азотистый феррит, содержащий при нормальной т-ре около 0,01% N. См. также Альфа-фаза) у — нитрид (5,7—6.1% N) с узкой областью [c.30]

    ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ — сплавы железа с углеродом. Различают Ж. с. чистые (со следами примесей), используемые для исследовательских целей и особо важных изделий, и Ж. с. технические — стали (до 2% С) и чугуны (более 2% С). Технические Ж. с. содержат, кроме железа и углерода, постоянные примеси (марганец, кремний, серу, фосфор, кислород, азот, водород), вносимые из исходных шихтовых материалов, и примеси (медь, мышьяк и др.), обусловленные особенностями произ-ва. Фазовые состояния Ж. с. при разных хим. составах и т-рах описываются диаграммами стабильного и метаста-бильного равновесия (см. Диаграмма состояния железо — углерод). Полиморфные превращения (см. Полиморфизм) таких сплавов связаны с перестройками гранецентрированной кубической решетки гамма-железа и объемноцентрированной решетки альфа- и дельта-железа. Стали подразделяют на доэвтектоидные (менее 0,8% С) с ферритоперлитной структурой (см. Феррит, Перлит в металловедении) в равновесном состоянии, эвтектоидиые (около 0,8% С) с перлитной структурой и заэвтектоидные (свыше 0,8% С), структура к-рых состоит из перлита и вторичного цементита. Доэвтектоидные стали применяют гл. обр. для изготовления деталей машин, агрегатов и конструкций (см. Конструкционная сталь), эвтектоидиые и заэвтектоидные стали — для изготовления режущего, штампового и измерительного инструмента (см. Инструментальная сталь). Приме- [c.444]

    НИТРОЦЕМЕНТАЦИЯ, газовое цианирование — диффузионное насыщение поверхности изделий из стали (чугуна) одновременно углеродом и азотом в газовой среде вид химико-термической обработки. Насыщение в расплавленных солях, содержащих углерод и азот, наз. цианированием. Н. повышает твердость, износостойкость и выносливость материалов, а иногда и коррозионную стойкость. Совместное насыщение стали углеродом и азотом объединяет цементацию и азотирование в один процесс и может осуществляться из твердой, жидкой или газовой среды. Повышение содержания азота в поверхностном слое снижает температурную область существования гамма-железа и способствует интенсивному науглероживанию стали при более низких т-рах, чем в процессе цементации. При низкой т-ре (500—700° С) сталь насыщается преим. азотом, при высокой (820—960° С) — углеродом. Фазы, образующиеся в диффузионных слоях, изоструктурпы фазам в азотированных слоях и имеют карбонитрид-ный характер — Foj (N ), Feg (N ), Ред (N ), азотисто-углеродистые феррит, аустенит О. мартенсит. Низкоуглеродистые стали насыщают при т-ре 820—960° С (высокотемпературная П.), улучшаемые среднеуглеродистые и высоколегированные инструментальные стали—при температуре 550—600° С (низкотемпературная [c.83]


Смотреть страницы где упоминается термин Феррит чугунах: [c.193]    [c.198]    [c.344]    [c.51]    [c.52]    [c.57]    [c.39]    [c.97]    [c.93]    [c.439]    [c.445]    [c.604]    [c.648]    [c.648]    [c.766]    [c.45]    [c.50]    [c.324]    [c.662]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.80 ]




ПОИСК





Смотрите так же термины и статьи:

Ферриты

Чугунные

Чугуны



© 2025 chem21.info Реклама на сайте