Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

одновременно углерода и водорода

    В литературе тенденцию к автоматизации иллюстрируют обычно примерами спектрометрических приборов с непосредственной выдачей результатов и автоматических анализаторов. Однако не менее полезные устройства используются в более ограниченных типах анализов. Например, предложено несколько различных устройств для одновременного определения углерода, водорода и азота в органических соединениях. В одном из таких приборов образец сжигают в кислороде и продукты сгорания вводят в газовый хроматограф. Разделенные компоненты последовательно регистрируют катарометром содержание элементов определяют из отношения площадей пиков, зарегистрированных самописцем. [c.544]


    Экономию в расходовании пара и сокращения числа операций можно достичь за счет выделения в процессе паровой каталитической конверсии не двуокиси углерода, а водорода. В работе [8] предложено вести паровую каталитическую конверсию углеводородов над стационарным катализатором с передачей тепла через стенку, с одновременным выводом водорода из реакционной зоны через полупроницаемую мембрану из сплава палладия. Через перегородку из сплава палладия проходит водород, а все другие газы задерживаются. Способ позволяет получать водород высокой степени чистоты. [c.136]

    Связи углерод — водород в этилене являются простыми связями, как, например, в этане, но они образованы в результате перекрывания а не зр -орбиталей углерода, как в этане. По сравнению с 8р -орбиталью 5р -орбиталь имеет менее р-характер и более в-характер. р-Орбиталь находится на некотором расстоянии от ядра 8-орбиталь расположена ближе к ядру. По мере возрастания 5-характера гибридной орбитали ее эффективный размер уменьшается и одновременно уменьшается длина связи с данным атомом. Таким образом, связь водорода с р -гибридизованным атомом углерода ( р — з) должна быть короче, чем с р -гибридизованным (зр8 — 8). [c.145]

    Ряс. 25. Трубка для одновременною определения углерода, водорода, галоидов и серы. [c.49]

    Особые трудности возникают при анализе фторсодержащих соединений, продукты сгорания которых реагируют с кварцем трубок для сожжения, в результате чего образуется летучий четырехфтористый кремний, задерживающийся в поглотительных трубках. Он может быть уловлен с помощью окиси магния [79, 90]. Предложено большое число разных катализаторов для удержания гетероэлементов, помимо С, Н и О описано много методов одновременного определения углерода, водорода и других элементов в одном и том же образце. Современные и перспективные методы определения различных элементов охарактеризованы в обзорах [81—83]. [c.35]

    Определение количественного содержания отдельных элементов в органических веществах называется элементным анализом, который может проводиться макро-, полумикро- и микрометодами. При макроанализе берут для сжигания навеску в 0,15—2 г, при полумикроанализе —в 20—30 мг, а при микроанализе —в 2—5 мг. В настоящее время широко распространен полумикрометод, который позволяет работать с малыми количествами вещества и проводить довольно быстро анализ. Определение основных элементов — углерода, водорода, азота, кислорода — чаще всего производят сжиганием навески вещества в трубке из тугоплавкого стекла или кварца, причем определение углерода и водорода производят одновременно. [c.96]


    Разработаны автоматические микроанализаторы с использованием принципа газовой хроматографии, в которых одновременно определяют углерод, водород, азот и серу. [c.20]

    При применении указанных катализаторов теплотворную способность газа можно регулировать изменением температуры, отношения пар/масло и объемной скорости. С повышением температуры теплотворная способность газа снижается, что обусловлено протеканием реакций с паром. Если пиролиз углеводородов проходит слишком энергично, теплотворная способность газа и термический к. п. д. процесса снижаются, так как при этом либо увеличивается выход смолы, либо усиливается отложение углерода на катализаторе (с одновременным образованием водорода). При понижении температуры наблюдается обратное. Теплотворная способность газа уменьшается с увеличением отношения пар/масло получаемый газ отличается более высоким содержанием двуокиси углерода, что обусловлено конверсией окиси углерода водяным паром. [c.320]

    Анализатор для одновременного определения углерода, водорода и азота в трудносгораемых органических соединениях [c.299]

    Причина высоких значений pH, т. е. щелочных свойств поверхности, термических и печных саж не установлена. Возможно, что здесь известную роль играет присутствие водорода, так как при дезактивации сажи нагреванием с одновременным удалением водорода сажа после повторной активации кислородом имеет по сравнению с исходной сажей несколько меньшее значение pH Одпако характер связей водорода и углерода, на поверхности частиц до сих пор не ясен водород либо входит в состав высокополимерных углеводородов, которые могут содержаться в саже, либо адсорбирован поверхностью. Для выделения этого водорода из сажи требуется температура не ниже 1000°. [c.66]

    Нами установлено, что еще большие возможности открываются при сочетании газовой хроматографии с другими физико-химиче-скими методами. Так, при определении углерода, водорода и азота наиболее целесообразно сочетание метода газовой хроматографии с кулонометрией [16, 17], а одновременное определение серы и галогенов наиболее удачно при сочетании газовой хроматографии с кондуктометрией. [c.31]

    В настоящей статье излагаются созданные нами новые методы хроматографический — для определения кислорода, хромато-куло-нометрический — для одновременного определения углерода, водорода и азота и хромато-кондуктометрический — для одновременного определения серы и галогенов. [c.31]

    ХРОМАТОГРАФИЧЕСКОЕ ОДНОВРЕМЕННОЕ ОПРЕДЕЛЕНИЕ УГЛЕРОДА, ВОДОРОДА И АЗОТА В РАЗНООБРАЗНЫХ ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ [c.34]

    Для одновременного определения трех элементов — углерода, водорода и азота в разнообразных органических веществах используются газовая хроматография и кулонометрия в сочетании с окислением органического вещества в герметически закрытой кварцевой пробирке. [c.34]

    Предлагается метод одновременного определения углерода, водорода, азота в органических соединениях с газо-хроматографическим окончанием анализа. Анализируемое вещество окисляется окисью меди при пиролитическом разложении навески в замкнутом объеме в среде гелия при 750—850 С, Продолжительность сожжения 30 мин. Продукты окисления вытесняются гелием через электролитическую ячейку, где происходит накопление и последующее электролитическое разложение воды. Продукты пиролиза и электролиза (N2, СО,, О...) идентифицируются газо-хроматографическим методом. [c.338]

    Интенсивность любой из этих реакций может изменяться в весьма широких пределах в зависимости от продолжительности, температуры и парциального давления водорода. Потенциально при соответствующем выборе катализатора и условий водород способен тем или иным способом взаимодействовать с любым углеводородным компонентом нефти практически при любых температуре и давлении. Обычно температура промышленных процессов не превышает приблизительно 540° С, а давление — около 700 ат. Как правило, с повышением температуры усиливаются реакции гидрокрекинга, т. е. реакции, при которых происходит разрыв связей углерод — углерод, например деалкилирование, разрыв колец, разрыв цепей. Если парциальное давление водорода недостаточно высокое, то одновременно происходит также разрыв связей углерод — водород, сопровождающийся выделением молекулярного водорода и образованием алкенов и ароматических углеводородов. Хотя интервалы температур, при которых проводят термический крекинг и гидрирование, практически совпадают, применение катализаторов и малая продолжительность реакций, а также присутствие водорода подавляют нежелательные термические реакции, которые неизбежно протекали бы при обычных условиях. Повышение давления благоприятствует образованию связей углерод — водород и насыщению кратных связей углерод — углерод. При достаточно низких давлениях алканы претерпевают дегидрирование до алкенов и циклизацию в ароматические углеводороды цикланы дегидрируются до алкенов и ароматических углеводородов, а пятичленные цикланы изомеризуются и дегидрируются до ароматических. Практически при любых условиях гидрирования в той или иной степени происходит изомеризация углеводородных цепей и колец. Выбор надлежащих условий и применение достаточно активных катализаторов позволяют достигнуть преобладания любой из рассмотренных реакций, т. е. высокой избирательности превращения углеводородов в целевые продукты. [c.127]


Рис. 130. Массы возможных молекулярных ионов (с номинальной массой 200), содержащих углерод, водород, не более 4 атомов азота, 4 атомов кислорода или 6 атомов кислорода и азота одновременно. Рис. 130. Массы <a href="/info/1460325">возможных молекулярных</a> ионов (с <a href="/info/141633">номинальной массой</a> 200), содержащих углерод, водород, не более 4 атомов азота, 4 атомов кислорода или 6 атомов кислорода и азота одновременно.
    II. МЕТОД ОДНОВРЕМЕННОГО ОПРЕДЕЛЕНИЯ УГЛЕРОДА, ВОДОРОДА, АЗОТА [c.115]

    Высококипящие фракции нефти наряду с индивидуальными углеводородами в значительном количестве содержат гетероор-ганические соединения, в состав которых одновременно входят углерод, водород, кислород, сера, азот и металлы. Эти соединения объединяют в группу смолисто-асфальтеновых веществ. По отношению к различным растворителям их подразделяют на четыре группы 1) нейтральные смолы, растворимые в легком бензине (петролейном эфире), пентане 2) асфальтеиы, нерастворимые в петролейном эфире, но растворимые в горячем бензоле  [c.24]

    В процессе парциального окисления метана в целях поддержания горения при недостатке кислорода часть метана в окиси углерода и водороде должна быть больше, чем в конечных продуктах горения— двуокиси углерода и воде. Следовательно, необходимы определенные температура, давление и соотношенне кислород метан, при которых можно получить повышенное значение соотношения окись углерода водород и, одновременно, максимальную степень превращения метана при минимальном отложении сажи. [c.96]

    Наиболее высокомолекулярные гетероорганические вещества нефти, в состав которых одновременно входят углерод, водород, кислород, сера, а часто азот и металлы, называются смолисто-ас-фальтеновыми веществами. Летучесть их невелика, поэтому при разгонке нефти они концентрируются в основном в остаточных нефтепродуктах. В бензиновый дистиллят они не попадают. Чем выше пределы перегонки фракций, тем больше с ними перегоняется смол. Но доля их во всех дистиллятах не превышает 15% от общего количества в нефти. [c.40]

    Уэндер, Орчин и Сторч [25] попытались проверить гомогенный характер реакции гидрирования. Для этого они измеряли скорость гидрирования масляного альдегида при 185° и давлении водорода 144 атм. Ими было проведено 3 опыта в присутствии тонкодисперсно го металлического кобальта прн различных давлениях окиси углерода, вводившейся одновременно с водородом. В результа 1 e реакции масляный альдегид восстанавливался до бутанола-1. Полученные данные приведены ниже. [c.206]

    В конце 1950—начале 1960 годов начали интенсивно ра.ишваться электрохимические и физические методы определения углерода и водорода в продуктах сгорания органических соединений кондуктомет-рия, термокондуктометрия, кулонометрия, ИК-спектроскопия и другие методы. Однако наиболее жизнеспособным оказалось сочетание газовой хроматографии с термокондуктометрией, потому что это позволило проводить одновременное определение водорода. углерода и азота, которые входят в состав большого количества органических соединений. [c.815]

    НЫЙ анализ органических соединений с газохроматографичоским определепиел продуктов разложения. II. Метод одновременного определения углерода, водорода, азота // Методы анализа органических соединений, нефтей, их смесей и производных.— М. Наука, 1969.— С. 115—120. [c.209]

    Существует группа реакций, в которых гидрид-ион переносится от атома углерода. Связь углерод—водород имеет низкую полярность и мало склонна к разрыву, требуемому для гидридного переноса. Такие реакции обычно протекают через циклические переходные состояния, в которых новые С—Н-свяаи образуются одновременно с разрывом старых. Гидрндпый перенос облегчается за счет высокой плотности заряда на атоме углерода, сдужгицем донором гидрид-иона. Реакция Канниццаро — катализуемое основаниями диспроцорциомирование альдегидов— является одним из примеров подобных реакций гидридного переноса,. Ее общий механизм приведен ниже  [c.130]

    Метод радиоактивных индикаторов позволяет количественно н с необычайно высокой чувствительностью контролировать превращения, миграцию и распределение меченных радиоизотопами веществ в исследуемой системе и решать задачи, которые ранее применявшимися методами решить не удавалось. Принцип этого метода состоит в шеткеу> изучаемого вещества радиоизотопом, т. е. в замене какого-либо атома в молекуле радиоизотопом того же элемента. Это шеченое- вещество по химическим свойствам не отличается от нерадиоактивного соединения, и его можно очень точно и с большой чувствительностью определять, измеряя ионизирующее излучение радиоизотопа. Одновременно с развитием метода радиоактивных индикаторов развилась новая отрасль радиохимии — синтез меченых соединений. К настоящему времени методом обычного органического синтеза, биосинтеза и обменных реакций получено около 2000 органических веществ, меченных радиоизотопами углерода, водорода, серы, фосфора и галогенов. Настоящая глава посвящена изложению основ работы с радиоизотопами и описанию используемых в настоящее время методов синтеза органических меченых соединений. [c.643]

    В пользу тетрациклического строения. Обычные методы определения длины боковой цепи в данном случае непригодны. Наиболее интенсивный ион в области с М/е =217 позволяет сделать вывод, что боковая цепь содержит 11 атомов углерода. На основании известных свойств аналогичных соединений наличие цепи такой длины невероятно. Анализ масс-спектрй показывает, что в отличие от стероидов имеется последовательность пиков, отвечающих массам 217, 229, 243, 257, 273, 287 и 301, с максимумом при массе 257. Используя эту величину при определении длины боковой цепи, получим С8Н17, что является правильным результатом. Поэтому в отличие от стероидов исследуемая молекула содержит три дополнительных атома углерода, присоединенных к кольцевой системе. В масс-спектре имеется другой пик почти такой же интенсивности, который соответствует иону с М1е= 273. Образование подобного иона лучше всего можно объяснить отщеплением метильной группы с одновременным перемещением водорода. [c.60]

    Для соединений, которые не удалось идентифицировать по физическим константам, определяют молекулярную формулу, показывающую количество разли чных атомов в молекуле. Для этого сначала проводят качественный и количественный анализы. С помощью качественных реакций устанавливают, какиг элементы входят в состав анализируемого соединеиия. Затем по разработанным методикам определяют процентное содержание углерода, водорода, азота, серы, галогенов и других элементов. Обычно количество кислорода определяется косвенным образом по разности. В настоящее время в аналитическую практику внедрены автоматические анализаторы, на которых за несколько минут одновременно определяется процентное содержание углерода, водорода и азота. [c.500]

    Для определения энергий связи поверхности металлических катализаторов с элементами органических соединений нами [6] был предложен вариант кинетического метода [7]. Результаты для никелевых катализаторов вкратце опубликованы [6]. Кинетический метод в его применении к окисным катализаторам заключается в определении энергии активации нескольких реакций, обычно дегидрогенизации углеводородов и спиртов, а также дегидратации спиртов, откуда при помощи предлагаемого соотношения между энергией активации и высотой энергетического барьера вычисляются одновременно энергии связи с углеродом, водородом и кислородом (см. стр. 351 наст. сб.). Предложенный нами вариан метода основан на определении только одной энергии связи поверхнс сти катализатора с водородом (легким или тяжелым) при помощи р -акции пара-орто-конверсии водорода или дейтерия или гомомолекулярного изотопного обмена водорода (чем избегаются неточности, связанные с наложением возможных погрешностей при измерении энергии активаций той или иной реакции). Предполагается наличие соотношения между энергией активации е и высотой энергетического барьера / реакции (представляющие собой, если реакция лимитируется стадией. адсорбции, суммарную теплоту адсорбции реагирующих соединений)  [c.346]

    Для реакций одновременного окисления-восстановления характерен переход системы в разных ее частях к более окисленному и одновременно к более восстановленному состоянию вследствие конкуренции отдельных молекул или частей одной молекулы за обладание кислородом. Около центров окисленности совершаются различные окислительно-восстановительные превращения. В углеродо-водородо-кислородных веществах цент рами окисленности, наиболее способными к превращениям, являются альдегидная и кетонная группы и, в особенности, оксиальдегидная и ок-сикетонная группировки. Разнообразные реакции одновременного окисления-восстановления можно подразделить на реакции междумолеку-лярного и внутримолекулярного окисления (табл. 1), Можно различать реакции междумолекулярного окисления-восстановления следующих типов  [c.310]

    В последнее время метод газовой хроматографии находит применение в органическом элементном анализе [1—5]. Нам кажется возможным и целесообразным одновременное микроопределение углерода, водорода и фтора во фторсодержащих органических веществах методом газовой хроматографии. Конечными продуктами являются СО2, 81 Рд и Н2О, конвертируемая в С2Н2. Нами разработаны условия хроматографического разделения и количественного определения компонентов этой смеси. [c.41]

    В настоящее время прогресс элементного анализа лежит в области его автоматизации, перехода к использованию очень ма-Л1ЛХ навесок, расширения числа определяемых элемеитов, совер-шенсгвовапия способов предварительного разложения вегцеств, перевода к неразрушающему анализу. Во многих странах автоматы для одновременного определения углерода, водорода и азота, а также и других элементов стали доступными приборами. Такие автоматические анализаторы позволяют использовать очень [c.127]

    Определение содержания углерода, водорода, алюминия и галогена в алюминийалкилах основано на сожжении вещества в среде кислорода при высокой температуре. Этот метод нашел широкое применение для определения состава алюминийалкилов. Особое развитие получил метод одновременного определения элементов из одной навески, разработанный Гельман и Брюшковой [1]. Определение углерода и водорода проводилось методом пиролитического сжигания в пустой кварцевой трубке. [c.132]

    К. Найтингел и Дж. Уо.лкер [27] разработали методику одновременного онределения углерода, водород а и азота с быстрым сжиганием анализируемой пробы с помощью индукционной печи. Быстрый нагрев и окисле- [c.147]

    А. А. Москвина, Л. В. Кузнецова, С. Л. Добычин и М. И. Розова [29] описали одновременное определение углерода, водорода и азота в органических соединениях из одной навески. Продукты превращения СОз, НдО и N2 определяли газохроматографически. Сожжение пробы анализируемого соединения, смешанного с окисью меди, ироводили в атмосфере гелия при 650° С и давлении 5—10 мм рт. ст. Сожжение пробы заканчивалось в течение 12 мин. Для восстановления окислов азота, которые могут образоваться в процессе сожжения, в кварцевой трубке по направлению к хроматографической колонке располагали последовательно слой восстановленной окиси меди (10 см) и короткий слой окиси меди (3—4 см). Продукты сгорания в потоке гелия (газ-носитель) разделяли на хроматографической колонке (длина 2 м, диаметр 4 мм) при 97—98° С на триэтаноламине, нанесенном на пористый тефлон (25 ч. триэтаноламина на 25 ч. тефлона). Вначале хроматографический анализ двуокиси углерода и азота проводили при скорости гелия 20 мл мин, затем при определении воды скорость газа-носителя повышали до 90 мл/мин. Расчет содержания азота, углерода и водорода проводили по величинам площадей [c.149]

    Москвина, Кузнецова, Добычин и Розова [11] предложили метод одновременного определения углерода, водорода и азота в органических соединениях из одной навески. Продукты превращения (диоксид углерода, вода и азот) определяют газохроматографически. Сожжение пробы анализируемого соединения, смешанного с оксидом меди, проводят в атмосфере гелия при 650°С и давлении 67—133 Па в течение 12 мин. [c.195]


Смотреть страницы где упоминается термин одновременно углерода и водорода: [c.17]    [c.17]    [c.356]    [c.148]    [c.185]    [c.242]    [c.188]    [c.169]    [c.377]    [c.52]    [c.269]    [c.208]   
Введение в термографию Издание 2 (1969) -- [ c.267 ]




ПОИСК







© 2025 chem21.info Реклама на сайте