Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители жидкой фазы модифицированные

    Анализируемую газовую смесь пропускают через колонку с адсорбентом или носителем неподвижной жидкости в непрерывном потоке воздуха при одновременном нагреве хроматографической колонки. Нагрев колонки дает возможность полнее и быстрее разделять компоненты вследствие изменения их адсорбционной способности. В зависимости от состава смеси для хроматографической колонки применяют различные адсорбенты или носители с различными неподвижными жидкими фазами. Так, для разделения смеси предельных углеводородов используют газо-адсорбционную хроматографию в качестве адсорбента применяют, например, крупнопористый силикагель МСК или КСК, а для разделения смесей, содержащих также и непредельные углеводороды, — окись алюминия. Однако на указанных адсорбентах не удается выделить некоторые изомерные компоненты. В этом случае применяют комбинацию газо-адсорбционной и газожидкостной хроматографии, а именно разделительную колонку наполняют адсорбентом, смоченным небольшим количеством малолетучей жидкости. Такие адсорбенты называются модифицированными. Сочетание газо-адсорбционной и газо-жидкостной хроматографии позволяет полнее разделить сложную смесь, состоящую из большого Числа разных по своей природе компонентов. [c.144]


    Изменение ВЭТТ с увеличением количества неподвижной жидкой фазы на полимерных сорбентах носит сложный характер (рис. 13), что связано с комплексным характером процессов взаимодействия сорбат—модифицированный сорбент, определяющих газохроматографическое разделение на модифицированных сорбентах [62, 66]. На полимерном сорбенте, модифицированном неподвижными жидкими фазами (газо-жидкостной вариант), к таким факторам, как молекулярная и вихревая диффузия и массообмен в газовой фазе, определяющим размывание хроматографических полос, добавляется сопротивление массопередачи в жидкой фазе, неравномерность пленки фазы, адсорбция на границах раздела газ—жидкая фаза и жидкая фаза — твердый носитель. [c.77]

    Представляют интерес результаты определения относительной полярности (по Роршнайдеру) модифицированных полимерных сорбентов (табл. 40) [68]. Данные таблицы показывают, что относительная полярность модифицированного полисорба-1 существенно отличается как от полярности исходного полисорба, так и от полярности неподвижной жидкой фазы. Это свидетельствует о большом влиянии полимерного сорбента-носителя на газохроматографическое разделение компонентов. Относительная полярность смешанного сорбента полисорб-1 Ч-неподвижная жидкая фаза увеличивается с увеличением количества полярной жидкой фазы. [c.79]

    Наблюдается качественная аналогия в удерживании молекул на неполярных полимерных сорбентах полисорбе-1 и полисорбе-4, модифицированных полиэтиленгликолем 3000, и на полярных сорбентах, выпускаемых за рубежом, серии порапак — порапаках N и Т. Таким образом, одним из способов создания полимерных сорбентов с регулируемой в широких пределах полярностью является модифицирование полимерных сорбентов полярными жидкими фазами. При использовании в качестве носителя полисорба-4, а в качестве неподвижной жидкой фазы полиэтиленгликоля 3000 наблюдаются аналогичные закономерности удерживания молекул разных классов, что и на полисорбе-1, модифицированном полиэтиленгликолем 3000. [c.81]

    Модифицирование полисорба N полиэтиленгликолем 3000 приводит к усилению его специфических свойств. Это проявляется, в частности, в том, что относительные времена удерживания спиртов —Сз превосходят соответствующие значения на немодифицированном полисорбе N и наблюдается более ярко выраженное отклонение зависимости lg У от пс или от а для молекул спиртов Сх—С4 от прямолинейности в области всех исследованных температур и концентраций неподвижной жидкой фазы, а также в том, что величины относительного времени удерживания молекул групп В и О на полисорбе Ы, модифицированном полиэтиленгликолем 3000, больше, чем на немодифицированном полисорбе Ы, и значительно возрастают с увеличением количества полиэтиленгликоля 3000 от 2 до 40%. Представленные в [66] данные свидетельствуют о том, что, используя специфический носитель и полярную фазу, можно су- [c.83]


    В работе [66] оценены также вклады в удерживаемый объем компонентов различных процессов сорбции на меж-фазных поверхностях при использовании в качестве носителей пористых полимерных сорбентов. Показано, в частности, что при разделении на пористых полимерных сорбентах, модифицированных неполярной жидкой фазой (скваланом), адсорбция на носителе — полимерном сорбенте вносит решающий вклад (от 57 до 73%) в величину удерживаемого объема полярных молекул и значительна для молекул алканов (41—45%). [c.85]

    Смит и Вэддингтон [29] исследовали поведение первичных, вторичных, третичных спиртов, диолов, алкилалифа-тических эфиров на колонках с полимерными сорбентами, модифицированными полиэтиленгликолем 1500. Авторы отметили, что модифицированные сорбенты полезны при разделении спиртов, имеющих различную структуру, но близкие температуры кипения. Они указали также на возможность конкуренции адсорбции и растворения при использовании в качестве носителя полимерного сорбента ПАР-1, модифицированного 5% полиэтиленгликоля 1500, и на возрастающую роль растворения в процессе разделения при увеличении количества жидкой фазы. [c.74]

    Таким образом, расчеты и экспериментальные данные показывают, что разделение на модифицированных полимерных сорбентах отличается от обычного варианта газожидкостной хроматографии, так как определяется в основном совокупным действием процессов адсорбции на поверхности полимерного сорбента и растворения в неподвижной жидкой фазе. При этом твердый полимерный носитель играет весьма активную, а иногда и решающую роль в разделении. [c.87]

    В работе [87] в качестве неподвижной жидкой фазы использовались п,п -азоксифенетол и п,п -(метоксиэтокси)-азоксибензол, а в качестве носителей — полисорб-1 и хромосорб 101. Исследовалось влияние количества жидкого кристалла п,/г -азоксифенетола на основные показатели газохроматографического процесса — на исправленный удерживаемый объем молекул У/ , ВЭТТ, критерий разделения и коэффициент асимметрии. Эти исследования проводились в интервале температур 120—175° С, соответствующих твердому жидкокристаллическому и жидкому состоянию га,/г -азоксифенетола. Показано, что при разделении компонентов на пористых полимерных сорбентах, модифицированных жидкими кристаллами (количество жидкого [c.90]

    Большой обзор но анализу свободных жирных кислот Са — Се представлен в работе [1761. Рассмотрены газо-жидкостной и газо-адсорбционный варианты хроматографии для анализа свободных жирных кислот, возможности модифицирования неподвижных жидких фаз, носителя и га-зо-носителя для снижения адсорбции кислот на инертном носителе. [c.135]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Мы уже отметили преимуш ества такого геометрически и химически модифицированного силикагеля с малой и весьма слабо адсорбирующей поверхностью в качестве инертного носителя неподвижных фаз, в частности жидких неподвижных фаз в газожидкостном (рас-творительном) варианте, так как обычные инертные носители на самом деле далеко не инертны, например алюмосиликаты. Кроме того, их пористость неоднородна. Описанное химическое модифицирование поверхностей, очевидно, имеет большое значение не только в случае насадочных колонок, но и в случае капиллярных колонок. На рис. 9 показаны хроматограммы ряда паров, полученные на стеклянных капиллярах до и после модифицирования их поверхности [22]. Верхняя хроматограмма получена на немодифицированном капилляре после нанесения пленки силиконового масла. Получились размытые пики. Из стеклянного капилляра с поверхностью, модифицированной триметилсилильными группами, все изучавшиеся пары вышли практически одновременно с газом-носителем, что свидетельствует об инертности модифицирующего слоя. После нанесения пленки силиконового масла на такой модифицированный капилляр получилось прекрасное разделение, все компоненты вышли в виде четких симметричных пиков. [c.19]


    Рогинским, Яновским и др. [44] разработан комплексный метод /исследования кинетики каталитических реакций, связанный с проведением реакций в хроматографическом режиме. Сущность этого варианта заключается в "том., что в трубке, заполненной катализатором, в потоке газа-носителя одновременно происходит и химическая реакция, и разделение компонентов. Для описания этого процесса в правую часть дифференциального уравнения (1,65) в простейшем случае следует добавить слагаемое х рс (где kp — константа скорости реакции), если реакция происходит в газовой фазе, или (1 — к) kpd, если она происходит на поверхности твердого катализатора или в жидкой фазе. Результаты процесса, зафиксированные на хроматограмме, позволяют с учетом модифицированного уравнения (1,65) определить константы скоростей гетерогенных реакций различных порядков. [c.316]

    Диатомовые носители легко дезактивируются (см. разд. 1.5), и поэтому для их пропитки достаточно даже небольшого количества жидкой фазы подобным образом ведут себя также модифицированные носители на основе силикагеля (см. разд. 1.7). [c.220]

    До последнего времени, несмотря на явные преимущества сажи, ее почти не применяли в газовой хроматографии, а если и использовали, то лишь в газо-жидкост-ном варианте в качестве носителя жидкой фазы. Вместе с тем использование графитированной сажи обладает рядом преимуществ. Поэтому мы попытались использовать графитированную термическую сажу Стрелинг Г-1 (3000°С), вводя ее в широкие поры модифицированного триметилхлорсиланом силикагеля в количестве около 18% [2]. [c.469]

    Избежать этих недостатков можно, применяя адсорбционное модифицирование поверхности таких адсорбентов. В отличие от нанесения больших количеств жидкостей на носители с малой удельной поверхностью, используемого в газожидкостной хроматографии, когда основной причиной удерживания является растворение в неподвижной жидкой фазе, при модифицировании поверхности адсорбентов-носителей для газоадсорбционной хроматографии количество модифицирующего вещества должно быть небольшим. В случае лет учих модификаторов оно не должно превышать количества, достаточного для образования плотного мономолекулярного слоя, чтобы все молекулы модификатора контактировали бы с адсорбентом-носителем. Поэтому для обеспечения необходимой [c.75]

    Джонс [61] отметил важную роль использования модифицированных пористых полимеров для анализа водных растворов формальдегида. Формальдегид обычно содержит метанол, отделение от которого затруднено. Вода, формальдегид и метанол на диатомитовых носителях сильно адсорбируются и время анализа велико. Использование сорбентов на основе сополимеров стирола и дивинилбензола в качестве носителей неподвижных жидких фаз ( 3, 3 -оксидинит-рилиропионат, карбоваксы 400, 1000, 20М, этофат 60/25, тетраацетат пентаэритрита, октаацетат сахарозы) обеспечивает полное разделение трех компонентов. [c.88]

    Твердая фаза (носитель) обычно представляет собой гладкую илщ шероховатую поверхность из чистого металла. Ею может служит также поверхность трубки, модифицированная каким-либо неор ганическим соединением, на которой в виде пленки сконденсирована жидкая фаза. В последнем случае говорят о разделяющем капил ляре, а методику в целом называют капиллярной ГХ [44] (фиг. 67)  [c.298]

    Холлис и Хайес [60], определявшие воду в различных средах на немодифицированных и модифицированных полярными жидкими фазами порапаках, установили, что сорбент, представляющий собой пористый полимер с нанесенной на него жидкой фазой, по своим хроматографическим свойствам отличается как от самого полимера, так и от жидкой фазы, нанесенной на любой другой носитель. Разделительная способность модифицированных пористых полимерных сорбентов основана на суммарном действии пористого полимера и неподвижной жидкой фазы. К такому же выводу пришли Джонс [61], Янссон с соавторами [62], Дресслер, Гука и Янак [36], Бомбаух и др. [63]. [c.74]

    Янссон, Холгрен, Видмарк [62] использовали в качестве носителей порапаки Р, Т, ПАР-1, а в качестве неподвижных жидких фаз сквалан и карбовакс 20М в количестве 0,5—10%. Они отметили, что времена удерживания соединений зависят от количества неподвижной жидкой фазы и свойств фазы, а также от структуры полимерных сорбентов, в частности от величины удельной поверхности сорбентов. Так, при использовании в качестве носителя поли-пака-1 (5 = 480 м /г) времена удерживания компонентов меньше, чем при использовании в качестве носителя порапака Р (5 = 660 м 1г). При нанесении на сорбенты кар-бовакса 20 М в количестве 0,5—10% времена удерживания большинства соединений уменьшаются. Для органических кислот и воды эти эффекты наблюдаются в меньшей степени, что, по-видимому, связано с высокой специфичностью взаимодействия сорбат—модифицированный полимерный сорбент. [c.76]

    Распределительная хроматография основала, на распределении веществ между двумя несмешивающимися жидкими фазами. При разделении биополимеров используют водно-органические фазы. Неподвижная жидкая фаза формируется в результате ее закрепления на пористом нерастворимом носителе силами полимо-лекулярной адсорбции. Если носитель по своей природе гидрофилен (целлюлоза, силикагель, стекло), то неподвижной является более гидрофильная жидкая фаза. Если же полимер, например силикагель, модифицирован объемистыми гидрофобными радикалами, то неподвижной является более гидрофобная фаза. В этом случае разделение называют хроматографией с обращенной фазой. [c.238]

    Таким образом, приведенные данные показывают, что п)тем химического модифицирования поверхности можно резко улучшить химические и физические свойства высокодисперсных тел — адсорбентов, наполнителей полимериых материалов, загустителей смазок, носителей жидких и твердых фаз для газовой хроматографии и др. Заменой гидроксильных групп кремнезема органическими радикалами с определенными функциональными группами можно придать кремнезему специфические адсорбционные и ионообменные свойства. Метод химического модифицирования поверхности наполнителя кремнеземов позволяет также в широких пределах изменять физико-химические свойства наполненных ими полимерных материалов. [c.182]

    При разделении аминов и аммиака на порапаках Р и Р не удается добиться удовлетворительной формы пиков [146]. На полимерах, модифицированных путем нанесения таких жидких фаз, как тетраэтиленпентамин или полиэтиленимин, возможно определение воды. Вытеснение влаги и свободного аммиака из расплавленного нитрита натрия продуванием воздуха и последующий газохроматографический анализ позволяют быстро определить pH и влажность этого материала [37 ]. Обермиллер и Шарлье [218] установили, что на колонках с порапаком Q (50—80 меш) возможен анализ смеси постоянных газов с оксидом углерода и газами, содержащими серу. Эти авторы использовали хроматографическую систему с двумя колонками. На колонке длиной 2 м с внутренним диаметром 1,2 мм при 75 °С разделяли СО , НаЗ, 50а и Н2О ( горячая колонка ), а на колонке длиной 10 м при —65 °С — Аг, Оа, N2 и СО. Полный анализ такой смеси осуществляли с помощью переносного хроматографа с двумя колонками и детектором по теплопроводности на термисторах. Для создания оптимальных условий отделения ЗОа путем соответствующего кондиционирования колонки в газ-носитель (гелий) добавляли ЗОа в концентрации 100 млн . [c.309]

    Проба нефти исследуется на лабораторном газовом хроматографе, снабженном пламенно-ионизационным детектором, устройством программирования температуры термостата, дифференциальной схемой подключения колонок и обогревом детектора. Методика отрабатывалась на хроматографах серии Хром (ЧССР). Колонки стальные, насадочные 3,6 мХЗ мм, неподвижная жидкая фаза— СКТФТ-50Х (4%) на твердом носителе типа хромосорб-Р. В качестве твердого носителя может быть также использован отечественный модифицированный диатомитовый носитель цветохром (фракция 0,25—0,315 мм), выпускаемый в Армянской ССР. Применяется режим линейного программирования температуры от 30 до 320 °С со скоростью подъема 3 °С/мин (рис. 84). Качественная интерпретация производится по времени удерживания эталонных соединений, количественное содержание рассчитывается по высотам пиков компонентов благодаря их симметричности. Абсолютное количество компонентов определяют методом внутреннего стандарта. [c.224]

    В ряде случаев определение можно с успехом провести на набивной колонке с высокоселективной фазой бентон-245, модифицированной вазелиновым маслом. В предлагаемом ниже варианте метода, разработанном УкрНИГРИ, анализ рекомендуется выполнять в режиме программирования температуры колонок (рис. 88). В качестве газа-носителя использовался гелий. Неподвижная жидкая фаза — бентон-245, модифицированная вазелиновым маслом в соотношении 28 72. Инертный твердый носитель — ИНЗ-600. Для проведения анализа необходимо иметь набор индивидуальных ароматических УВ (бензол, толуол, этилбензол, 1,4-, 1,3-, 1,2-диметилбензолы и др.). [c.238]

    Газообразные продукты анализировали методом газожидкостной хроматографии. В качестве жидкой фазы использовали эфир триэтиленгликоля и масляной кислоты, нанесенный на модифицированный кирпич (6). Анализ проводили при комнатной температуре. В качестве газа-носителя применяли водород. В опытах с большими количествами катализатора в составе газов превращения присутствовало большое количество воздуха, десорбируемого с катализатора при нагревании. [c.20]

    При модифицировании в жидкой фазе адсорбент с раствором запаивают в толстостенную ампулу и выдерживают несколько часов при температуре выше точки кипения триметилхлорсилана (57,3 °С). При этом давление в ампуле возрастает (необходимы соответствующие предосторожности) пропорционально содержанию гидроксильных групп на поверхности адсорбента, так как при реакции образуется хлористый водород. После модифицирования адсорбент (или носитель) освобождают от продуктов реакции путем нагревания выше 150 °С, так как из-за возможного присутствия воды образуются (СНз)з810Н и (СНз)з5Ю51(СНз)з, которые кипят соответственно при 98,9 и 100,4 °С. [c.97]

    Химические реакции, снижающие асимметричность пиков, используются при разделении аминов (реакция с КОН) и оснований — с фосфорной кислотой, применяемой для этой же цели при разделении алифатических кислот и фенолов. Предложенное автором работы 69] покрытие носителя серебром также снижает его адсорбционную способность. Однако более эффективным оказалось [70] модифицирование 0,5—1,0% дек-сила 300 G поликарборанметилсилоксаном, которое проводится в течение часа после обычной пропитки неподвижной жидкой фазой при пропускании инертного газа при 150°С. Процесс заканчивают 48-часовым нагреванием без доступа воздуха при 350 °С. Вещества, снижающие асимметричность пиков, можно также добавлять в газообразном (парообразном) состоянии, например повторно вводить в колонку сильно адсорбирующиеся пробы [71], а муравьиную кислоту, используемую в качестве такой добавки, можно непосредственно смешивать с газом-носителем [72]. [c.199]

    Модифицирование полимерных сорбентов впервые было осуществлено Холлисом [1] для разделения спиртов и аминов. Использование пористых полимерных сорбентО(В в качестве неподвижных жидких фаз имеет значение не только для газохроматографического анализа [2, 3], но и для изучения адсорбции на поверхности полимерного сорбента-носителя и оценки ее вклада в общее зщержи-вание компонентов, а также для изучения адсорбции на носителе в зависимости от особенностей геометрической и химической структуры. [c.46]

    Построенная этими авторами теоретическая модель процесса позволила получить расчетным путем хроматограммы и калибровочные кривые, весьма близкие к экспериментальным. Однако из этой гипотезы следует, что при пропускании через колонку достаточно большого ко-.ничества хелата (что часто делают при насыщении колонки) весь активный водород жидкой фазы (например, водород концевых гидроксильных групп) должен в конце концов израсходоваться и такая колонка, модифицированная хелатом, должна стать химически инертной по отношению к новым порциям хелата. К тому же результату должна приводить и силани-зация колонки. К сожалению, снизить предел обнаружения плохо хроматографирующихся хелатов такими приемами не удается, что указывает на более сложный механизм или наличие нескольких механизмов, ответственных за описанное явление. Возможно, параллельно с диссоциацией имеет место также ката-.литическое разложение хелата на поверхности твердого носителя. [c.63]


Смотреть страницы где упоминается термин Носители жидкой фазы модифицированные: [c.9]    [c.77]    [c.74]    [c.76]    [c.324]    [c.166]    [c.156]    [c.166]    [c.249]    [c.50]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза

Носители жидкой фазы



© 2025 chem21.info Реклама на сайте