Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Блоки для плавления

Рис. 45. Общий вид блока плавления Смита [167] Рис. 45. Общий вид <a href="/info/375123">блока плавления</a> Смита [167]

Рис. 48. Блок плавления в установке Каскад-01 Рис. 48. <a href="/info/375123">Блок плавления</a> в установке Каскад-01
Рис. 54. Общий вид блока плавления для получения кривых плавления по методу Ско [67] Рис. 54. Общий вид <a href="/info/375123">блока плавления</a> для <a href="/info/152346">получения кривых</a> плавления по методу Ско [67]
Рис. 63. Общий вид блока плавления [152] /—изолятор из плавленого кварца 2—внешний и внутренний электрод 3—теплоизолятор 4—изолятор 5—сосуд Дьюара 5—медный стакан 7—нагреватель 8—холодильник 9—крышка /й —провода термопар —подводы к электродам. Рис. 63. Общий вид <a href="/info/375123">блока плавления</a> [152] /—изолятор из <a href="/info/70611">плавленого кварца</a> 2—внешний и <a href="/info/648468">внутренний электрод</a> 3—теплоизолятор 4—изолятор 5—<a href="/info/13550">сосуд Дьюара</a> 5—медный стакан 7—нагреватель 8—холодильник 9—крышка /й —<a href="/info/305295">провода термопар</a> —подводы к электродам.
    Капилляр с веш,еством поместить в отверстие блока, термометр на 150—200" вставить в расположенное рядом отверстие, а наблюдение за поведением вещества в капилляре производить через сквозное боковое отверстие. Нагревание блока вести на газовой горелке или же на электрической плитке. Для плавного повышения температуры блока между ним и нагревателем нужно поместить асбестовые прокладки. Блок нагревать сначала очень быстро, но примерно за 30° до температуры плавления вещества скорость нагревания регулировать таким образом,чтобы она не превышала 1 град мин. [c.193]

    В расплавленном состоянии смеси, а также чистая камфора, представляют собой бесцветные жидкости, быстро мутнеющие при застывании, если капилляр вынуть из нагретого блока. При плохом прессовании смесей по мере их плавления обнаруживаются пузырьки воздуха, которые дают повышенную температуру плавления, поэтому от пузырьков воздуха надо избавиться. Это можно осуществить легким постукиванием капилляра о дно блока. [c.193]

    Ряс. 92. Металлические блоки для определения температуры плавления веществ  [c.179]


    При введении смеси полиоксиэтиленгликолей, имеющей молекулярный вес от 2800 до 4000, в количестве 30%, образующийся блоксополимер еще сохраняет способность к кристаллизации, присущую линейным полиэфирам, причем температура плавления сополимера (рис. 149) остается высокой (256°). Однако благодаря присутствию полиоксиэтиленовых блоков в макромолекулах сополимер приобретает повышенную гигроскопичность, лучше адсорбирует краситель, [c.544]

    Говоря о теплофизических свойствах подлежащих плавлению полимеров, следует иметь в виду, что перед плавлением гранулированный полимер предварительно спрессовывают в твердый блок. Такой уплотненный материал при моделировании можно считать сплошной средой. И только в некоторых процессах (таких, как спекание) необходимо принимать во внимание пористую структуру. Для большинства процессов переработки полимеров условия плавления таковы, что можно пользоваться сведениями о значениях к, р, Ср и к, приведенными в разд. 5.5, учитывая при этом, что теплофизические свойства зависят от эффектов структурирования, сопровождающих процесс переработки полимеров. [c.257]

Рис. 17.7. Технологическая схема получения пленки каландровым методом (гл. 16) 1 — хранение полимеров и добавок в силосах (см. рис. 17.1, поз. /) 2 — дозирование 3 — смешение в роторном смесителе [интенсивное смешение (11.4 — 11.6, 11.9), плавление с подводом тепла за счет теплопроводности и диссипативного разогрева (9,1)] 4 — смешение на двухвалковых вальцах (10,5, 11.8, 16.1) 5 — контроль за отсутствием металлических включений 6 — каландрование на 1,-образном каландре (гл. 16) 7 — контроль за толщиной 8 — охлаждение пленки в блоке охлаждающих барабанов [охлаждение (9.2—9.5) и ориентация (6.8) пленки формирование НМС (3.6)] 9 — намотка пленки на приемную бобину, Рис. 17.7. <a href="/info/215148">Технологическая схема получения</a> пленки <a href="/info/668183">каландровым методом</a> (гл. 16) 1 — <a href="/info/1441057">хранение полимеров</a> и добавок в силосах (см. рис. 17.1, поз. /) 2 — дозирование 3 — смешение в <a href="/info/430118">роторном смесителе</a> [<a href="/info/197329">интенсивное смешение</a> (11.4 — 11.6, 11.9), плавление с <a href="/info/30175">подводом тепла</a> за счет теплопроводности и диссипативного разогрева (9,1)] 4 — смешение на двухвалковых вальцах (10,5, 11.8, 16.1) 5 — контроль за отсутствием <a href="/info/1022344">металлических включений</a> 6 — каландрование на 1,-<a href="/info/185722">образном каландре</a> (гл. 16) 7 — контроль за толщиной 8 — <a href="/info/901254">охлаждение пленки</a> в блоке охлаждающих барабанов [охлаждение (9.2—9.5) и ориентация (6.8) <a href="/info/863252">пленки формирование</a> НМС (3.6)] 9 — <a href="/info/901488">намотка пленки</a> на приемную бобину,
    Стальной корпус ванны выложен изнутри шамотом, плавленым диабазом и теплоизолирован. Анодами являются угольные блоки, катодами — листы стали. Аноды вводят в ванны сбоку или сверху. Последнее удобнее, так как замена анодов не вызывает необходимости разбирать стены. [c.516]

    Кроме того, температуру плавления в капиллярах можно определять на специальных металлических блоках, которые изготовляются преимущественно из меди. [c.53]

    Для нагревания образцов следует пользоваться блоком, представляющим собой массивный кусок меди. Блок можно применять в интервале температуры от О до 1000°. Блок имеет отверстия для термометра и для капилляра, в котором плавится исследуемое вещество. Размеры отверстий таковы, что термометры и капилляры плотно входят в них, чем достигается хороший термический контакт с металлом блока. Чтобы видеть нижние концы капилляров, в блоке следует прорезать горизонтальные отверстия, которые закрыты стеклами для защиты от проникновения холодного воздуха. Через эти отверстия наблюдать за изучаемым веществом в капилляре. Блок покрыть слоем асбеста. При работе блок нагреть (рис. 89) на слабом огне горелки и произвести отсчет температуры плавления. Плавление вещества в капилляре наблюдать при помощи бинокулярной лупы с увеличением в десять раз при боковом освещении. Около блока поставить осветительную лампу. [c.192]

    В отличие от метода Раста пробы можно приготовлять следующим образом сначала взвешивают запаянный с одного конца капилляр. После наполнения первым компонентом капилляр взвешивают и туда же добавляют второй компонент и опять взвешивают. После этого запаивают второй конец капилляра. Для хорошего перемешивания компонентов капилляр после плавления вынимают из блока и сплав перемешивают встряхиванием. Отмечают температуру плавления, а не кристаллизации, так как при охлаждении наблюдается сильное переохлаждение. В массе кристаллов, видимых в поле зрения бинокуляра, наблюдают за одним из них и отмечают температуру в момент его расплавления. [c.244]

    По методу Кофлера несколько кристалликов вещества на предметном стекле помещают в обогревательный блок и устанавливают на столике микроскопа, через который наблюдают плавление. Температуру измеряют термопарой или термометром, нагревание регулируют реостатом, который устанавливают так, чтобы в интервале температуры плавления она возрастала на 2—4° в минуту. Определение проводят быстро и с большой точностью. Особенно эффективен (вследствие быстрого нагревания) этот метод для веществ, плавящихся с разложением. [c.80]

    Исследование процесса плавления полимеров с помощью ДТА дает возможность изучить некоторые их свойства (температуру и температурный интервал плавления, теплоту плавления и др.) и особенности структуры (степень кристалличности, состав статистических и блок-сополимеров, стереорегулярность [c.105]

    Представления о структуре монокристаллов полимеров, полученных из разбавленных растворов, справедливы и для пластин, получающихся при кристаллизации из расплавов. Некоторое различие наблюдается лишь в их размерах. Это связано с тем, что температуры, при которых кристаллизация полимеров из разбавленных растворов происходит с заметной скоростью, обычно значительно ниже температуры плавления. Температуры кристаллизации из расплава могут быть близки к температуре плавления полимера, а это способствует образованию более толстых пластин. Обычно при кристаллизации из расплава вырастают целые блоки пластин — многослойные кристаллы. Как и монокристаллы, выра- [c.173]


    Плавление вещества в капилляре наблюдать при помощи бинокулярной лупы с увеличением в десять раз при боковом освещении. Около блока поставить осветительную лампу. [c.187]

    В отверстие блока поместить капилляр с веществом, термометр на 150—200° С вставить в расположенное рядом отверстие, а наблюдение за веществом в капилляре производить через сквозное боковое отверстие. Нагревание блока вести на газовой горелке или электрической плитке. Для плавного повышения температуры блока между ним и нагревателем нужно поместить асбестовые прокладки. Блок нагревать сначала очень быстро, но примерно за 30° до температуры плавления вещества скорость нагревания регулировать таким образом, чтобы она не превышала 1 град/мин. Сначала определить температуру плавления чистой камфоры, а затем температуры плавления смесей. Для получения более точных результатов каждое определение производить дважды и в качестве конечного результата взять среднюю величину из двух измерений. При нагревании внешний вид вещества в капилляре сначала не изменяется, а затем кристаллы начинают плавиться и становятся прозрачными, [c.187]

    На рис. 54 показан общий вид блока плавления для получения кривых по методу Ско. Небольшая проба вещества ( 0,5 г) заключена в запаянной стеклянной ампуле 12, имеющей углуб-ление для размещения термопары. Для улучшения теплового контакта углубление заполняется вазелином или другим под ходящим веществом. Стенки ампулы должны быть возможно тоньше ( 0,07 мм), чтобы уменьшить теплоемкость и термическое сопротивление. При анализе негигроскопических веществ ампула может быть изготовлена из металла. Толщина стенок и в этом случае не должна превышать 0,1 мм. Определенные требования предъявляются и к толщине слоя вещества. Расстояние между внешней и внутренней стенкой ампулы не должно превышать 3 мм. Ампула подвешена в центральном канале нагревательного блока диаметром 10 мм. Для уменьшения конвекции воздуха канал сверху закрывается алюминиевой пробкой 10. [c.103]

    Ряд колонн обычно монтируется в один блок, так как такое расположение позволяет обогревать их паровым змеевиком. Фильтруемое масло насосом подается на верх колонны под давлением в несколько атмосфер до тех пор, пока фильтрат не появится в низу колонны. Несмотря на опасность образования каналов в адсорбенте, который таким образом частично вымывается, давление часто повышают. Телшература в системе, которая изменяется в пределах между 38 и 93° С в зависимости от сырья, может поддерживаться подводом сырьевого масла парафин и нетролатумы в основном обрабатываются при—3,9° С, выше их точек плавления. Тяжелые масла часто смешивают с лигроином перед фильтрацией для того, чтобы снизить их вязкость. Когда поток фильтрата становится слишком темным или почему-либо нежелательным для дальнейшего использования, подача сырья прекращается, и колонну продувают воздухом, чтобы удалить прилипшее масло. Затем через колонну прокачивается лигроин, чтобы окончательно извлечь масло, и подача лигроина продолжается [43] до тех пор, пока его цвет не будет меняться. [c.272]

    Некоторые, например воскообразные вещества, не удается растереть в тонкий порошок. В таких слу чаях используют капилляры, открытые с обоих концов, Заполненпе производят, надавливая капилляром на кусок вещества. Температуру плавления определяют в металлических блоках или приборах с воздушной баней (см. стр. 179), либо помещают капилляр с веществом в более широкий капилляр, заплав-ленный с одного конца. [c.176]

    Ряд преимуществ перед стеклянными приборами имеют массивные металлические, чаще всего медные, блоки для определения температуры плавления, которые нетрудно изготовить в лабораторных мастерских (рис. 92). Блок может быть нагрет до любой необходимой температуры с помощью электрической обмотки, подключенной через ЛАТР. Равномерность и плавность нагрева обеспечиваются высокой теплопроводностью меди и большой массой блока. Важно лишь, чтобы шарик термометра и капилляр находились в непосредственной бли< зости друг от друга и не прикасались к стенкам канала. Капилляр прикрепляют к термометру, либо вводят через специальный канал. Чтобы внутрь блока не попадал холодный воздух, отверстия канала для наблюдения должны быть закрь1ты слюдой или стеклянными плa тинкa И, а каналы для ввода термометра и капилляра — волокнистым асбестом или стекловатой. Снаружи блок тщательно изолируют. [c.178]

    Прост и удобен метод определения температуры плавления невозгоняющихся соединений, при котором небольшое количество вещества наносится непосредственно на ртутный шарик расположенного горизонтально термометра. Блок, предназначенный для этой цели, изображен на рис. 93, Он обеспечивает высокую точность измерения при условии нагрева вблизи температуры плавления не быстрее, чем на 1 °С в 1 мин. Для определения достаточно нанести на шарик термометра минимальное количество очень тонкого порошка. Момент расплавления в этом случае виден особенно четко. [c.179]

    Ванна печи. Печь имеет прямоугольную ванну с округленными углами. Футеровка стенок ванны выполняется блоками из плавленого корунда. Блоки предварительно не обрабатываются и идут на кладку сразу после литья. Зазор между блоками принимается минимальным, практически он составляет 10—12 мм. Кладка осуществляется на порошке корунд (экораль) тониной 0,2 мм на жидком стекле. Модуль жидкого стекла 1,34. Верхний пояс стенки и нижний выкладываются из высокоглиноземистого шамотного кирпича. Подина ванны футеруется углеродистыми блоками, уложенными на коксовую пыль размером 0,2—1 мм. Толщина футеровки стенок 800 мм. Зазор между футеровкой и кожухом ванны 70 мм забивается шлаковатой. Температурное расширение корунда поглощается за счет кладки углов ванны печи, которые выкладываются не по контуру кожуха, а с зазором и засыпается порошком корунда. Зазоры и слой изоляции из шлаковаты позволяют футеровке нормально расширяться без деформации стенок. [c.133]

    Были разработаны и предложены отечественные деэмульгаторы типа блок-сополимеров окисей этилена и пропилена — прокса-нол-186, проксанол-305, проксамин-385, представляющие собой неподвижные пастообразные вещества от желтого до светло-коричневого цвета с температурой плавления 31-37 °С. Пастообразная консистенция создавала трудности при использовании их в промысловых условиях (особенно в зимнее время года). Для извлечения реагентов из бочек их необходимо было нагревать до 50—55 °С в специальных плавильных печах, что увеличивало затраты на приготовление раствора реагента и делало процесс более трудоемким. К тому же повышалась опасность при работе с деэмульгаторами. С целью получения легкоподвижного продукта с температурой засты-в шия не выше минус 30 °С в Гипровостокнефти были проведены работы по улучшению товарных качеств реагентов-деэмульгаторов. [c.80]

    При температуре плавления в кристаллической фазе частичнокристаллических полимеров осуществляется переход первого рода. Плавление кристаллической фазы происходит в интервале температур ппгриной 10—30 "С, величина которого зависит от характера распределения размеров крпста.улитов, степени их совершенства и скорости нагрева. Обычно за Т,,, принимают значение температуры, соответствующее окончанию процесса плавления эта температура зависит от структуры полимера при плавлении блок-сополимеров наблюдаются две температуры плавления, характерные для каждого из гомополимеров. На стадии плавления в процессах переработки полимеров важную роль играет сильная зависимость Т, и Я от тепловой и деформационной предыстории в расплавленном, переохлажденном и твердом состоянии и от величины приложенного гидростатического давления в переохлажденном состоянии (см. гл. 3). [c.258]

Рис. 9.14. Скорость плавления блока ПЭВП размером 5,08X5,08 см на нагретом вращающемся барабане (по оси абсцисс — линейная скорость иа поверхности барабана, по оси ординат — скорость плавления, или объем перемещаемой твердой фазы). Температура барабана Рис. 9.14. <a href="/info/318156">Скорость плавления</a> блока ПЭВП размером 5,08X5,08 см на нагретом вращающемся барабане (по оси абсцисс — <a href="/info/12713">линейная скорость</a> иа поверхности барабана, по оси ординат — <a href="/info/318156">скорость плавления</a>, или объем перемещаемой <a href="/info/636">твердой фазы</a>). Температура барабана
    Скорость плавления блока твердого полимера ПЭВП размером 5,08 х 5,08 см на нагретом вращающемся барабане была измерена Сандстромом и Юнгом [32]. Эти результаты показаны на рис. 9.14. [c.291]

    Скорость плавления для целого блока равна (4,469-10" )-0,0508 = 2,27-10 кг/с, что эквивалентно 0,238 см /с (заметим, что объем, измеренный Сандстромом и Юнгом, — это смещенная твердая фаза). Сравнивая этот результат с измеренной величиной 0,147 см /с, видим, что ньютоновская модель дает завышенную на 60 % [c.292]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    В последнее время используется метод определения температуры плавления под мшроскопои — метод Кофлера. Несколько кристаллов вещества помещают на обогревательный блок, установленный на столике микроскопа. Температуру плавления измеряют термо- [c.40]

    МРАМОР — кристаллическая горная порода, состоящая из минералов кальцита СаСОд или доломита aMg (СО 3)2. Окраска М. зависит от примесей, цвет и рисунок М. проявляются только после полирования. М. бывает белого, серого, красного, черного н других цветов, но чаще всего пестрым. Добывают М. в карьерах монолитными блоками, применяют в архитектуре и строительном деле, электро- и сантехнике, для изготовления скульптур. Месторождения М. известны в СССР, Италии, Греции, Франции, Норвегии, США и других странах. Для имитации природного М. изготовляют искусственный из гипсовых и известковых вяжущих материалов.. . МУЛЛИТ — редкий минерал, силикат алюминия 3AI2O3 2Si02,T. пл, 1810 С. М. найден на о. Мулл (Шотландия). Из плавленого М. изготовляют огнеупорные материалы, тигли, плнты, кирпич. [c.166]

    Если температура плавления веществ ниже 0° С, ее обычно определяют также в капилляре, по вместо описанного выше нагревательного блока применяют охлаждаюшпй блок .  [c.80]

    Последовательность выполнения работы. Взвесить запаянный с одного конца капилляр, наполнить его первым компонентом и снова взвесить туда же добавить второй компонент и опять взвесить. После этого запаять второй конец капилляра. Для хорошего перемешивания компонентов после их плавления капилляр вынуть из блока и расплав перемешать встряхиванием. Затем капилляр поместить в блок и отмечать температуру плавления, а не кристаллизации, так как при охлаждении наблюдается сильное переохлаждение. В массе кристаллов, видимых в поле зрения биноку-ляра, наблюдать за одним из них, отмечая температуру в момент его расплавления. В качестве объектов можно использовать следующие системы пикриновая кислота — антрацен, фенол — нафталин, бензойная кислота — камфора и др. [c.244]


Смотреть страницы где упоминается термин Блоки для плавления: [c.96]    [c.96]    [c.240]    [c.193]    [c.192]    [c.244]    [c.283]    [c.59]    [c.41]    [c.79]    [c.107]    [c.188]   
Современные методы эксперимента в органической химии (1960) -- [ c.287 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Блок для определения точки плавления

Блок, измерение температуры плавления

Блоки для определения температуры плавления

Дифференциальный термический анализ плавления блок-сополимеров

Метод кривых плавления при линейно возрастающей температуре нагревательного блока

Определение температуры плавления высокоплавких веществ при помощи блока

Плавление блок-сополимеров

Температура плавления блок-сополимеров

Температура плавления, определени блоки с обогревом

Толи этилен-блок-пропилен плавление



© 2025 chem21.info Реклама на сайте