Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масса океана

    Генерация твердой фазы кремнезема, подобно химическому осаждению фосфатов и карбонатов, не связана с подтоком речных вод и не возникает прямо за счет выносимого ими материала. Непосредственным источником 3102, Р> карбонатов является сама водная масса океанов, реки лишь только пополняют их. [c.26]

    Н. Н. Зубов показал основные особенности формирования водных масс океанов и водных масс морей и выделил восемь видов водных масс в Атлантическом океане на основе анализа распределения температуры, солености, содержания кислорода и расположения вод по глубине и в пространстве. [c.163]


    Водные массы океанов [c.165]

    Формирование, распределение и взаимодействие водных масс морей связано с теми же климатическими и динамическими процессами, которые характерны и для водных масс океанов. Местные физико-географические условия определяют специфические особенности водных масс различных морей, к наиболее существенным [c.170]

    Вода на Земле находится в атмосфере (облака, дождь, туман и др.), на поверхности в виде самого крупного своего скопления — океана, на суше в виде рек, озер, материковых льдов и, наконец, на глубине в виде подземного океана, т. е. подземных вод в горных породах. Главная масса воды на Земле (океан и основная часть подземных вод) соленая. Пресной воды не так много и, что очень важно, распространена она на Земле неравномерно, есть обширные районы, где нечего пить. [c.7]

    Воды морей и океанов являются источниками сырья для добычи многих химических веществ. В промышленных масштабах из них извлекаются хлориды натрия и магния, бром, иод и другие продукты. В настоящее время их рассматривают и как потенциальные источники получения многих других элементов. Так, например, содержание элементов в водах Океана составляет (%) калия 3,8-10 , ванадия 5-10" , золота 4-10" , серебра 5-10" , урана 2-10" . Приняв массу воды на планете равной 1,4-10 тонн, получим, соответственно, содержание в ней золота 5,6-10 тонн и урана 2,8-10 т. Всего 0,01% этой массы [c.69]

    Гуминовые кислоты - сложная смесь высокомолекулярных органических соединений, образующихся при разложении отмерших растений и их гумификации. Гуминовые кислоты входят в состав органической массы низинных (до 40 мас.%), верховых (до 25 мас.%), переходных торфов (до 38 мас.%), землистых (до 60 мас.%) и плотных бурых углей (до 15 мас.%). В зонах выветривания каменные угли могут содержать значительное количество гуминовых кислот. Однако наибольшее количество гуминовых кислот содержится в почвах и донных отложениях озер, морей и океанов. [c.24]

    Морские течения не считаются с политическими и государственными границами. Ветер и перемещение водных масс транспортируют различные ядовитые вещества в океан. Так, один вид ДДТ, применяемый на полях Восточной Африки, был через несколько месяцев обнаружен в воде Бенгальского залива за 6 тыс. километров. [c.7]

    Большая часть воды на Земле приходится на морскую воду — воду морей и океанов (97,2%), часть воды сосредоточена в полярных льдах ( 2,1%), вода рек, озер и грунтовая вода составляет около 0,6%, соленая вода скважин и солончаковая вода — около 0,1%. В морской воде в растворенном состоянии содержатся соединения многих элементов, наибольшие количества приходятся на С1, На, Mg, 8, Са, К, С, Вг, В, Зг, Р, К, Ы, ЕЬ, Р, I, Ее, 2п, Мо. Масса этих элементов, содержащаяся в морской воде, огромна, так как объем мирового океана составляет 1,35 10 м . В каждом кг морской воды содержится более 19 г хлора, более 1 г магния и т. д., в среднем — 35 г различных солей. [c.673]


    Возникли физическая и химическая системы единиц атом-> ных масс. Физики за единицу атомной массы принимали Vie массы изотопа О , а химики — Vie средней массы атома кислорода, природного изотопного состава. Причем установлено, что изотопный состав кислорода атмосферного воздуха, воды океанов и минералов земной коры неодинаков. Это, естественно, приводило к различным результатам и затрудняло сопоставление физических и химических атомных масс. [c.9]

    Азот. Общее содержание азота в земной коре составляет 1 10" масс. %. Азот — главная составная часть воздуха (75,6 масс.% или 78,09 об. %). В виде соединений (главным образом в виде аммиака и кислородных соединений) азот встречается в водах океанов, морей, рек, источников, в атмосферных осадках. Большая часть связанного азота находится в органических соединениях, он входит в состав всех живых организмов и в небольших относительных количествах содержится в каменном угле (1—2,5%) и нефти (0,02—1,5%). Из неорганических природных соединений азота промышленное значение имеют селитры натриевая (чилийская) ЫаЫОз и калиевая (индийская) КЫОз. Крупные залежи селитры находятся в Чили. Встречаются скопления селитры в Советском Союзе в некоторых районах Туркменской, Узбекской, Таджикской и других республик. [c.130]

    Из элементов подгруппы кислорода наиболее распространен в природе кислород. В оболочке земного шара содержится кислорода много больше, чем любого другого элемента периодической системы. Учитывая содержащиеся в земной коре соли кислородных кислот (главным образом алюмосиликаты) и оксиды, воду океанов и свободный кислород в атмосфере, можно сказать, что на долю кислорода приходится около половины общей массы оболочки земного шара. [c.138]

    Повсюду — на поверхности земли и в атмосфере, в глубине земных недр, в водах океанов, морей и рек — ежечасно, ежесекундно происходят непрерывные превращения и изменения веществ. Вещество определяется тремя признаками занимает часть пространства, обладает массой покоя, построено из элементарных частиц. [c.4]

    Методы диспергирования практически осуществляются путем механического измельчения, дробления, истирания на дробилках, жерновах, шаровых мельницах и др. такие методы широко применяются в производстве фармацевтических препаратов, минеральных красок, графита, цементов. Активно процессы диспергирования протекают в природе. Приливо-отливные явления, прибой океанов, морей, озер развивают колоссальные силы, ведущие к раздроблению скал до валунов, гальки, песка и в дальнейшем вплоть до коллоидных частиц. Постоянное действие водного потока на русло рек непрерывно производит измельчение слагающих его пород. Ледники, развивая при своем движении громадные силы, истирают подстилающие породы. Огромные массы осадочных пород глины, лесс, представляют собой продукты диспергирования твердых пород, происходящего одновременно как под влиянием механических факторов, так и химического воздействия (выветривания под действием воды и углекислоты). Могучим фактором механического диспергирования твердых тел в природе является расширение воды при замерзании. Проникая в трещины горных пород и замерзая в них, вода вызывает дробление не только на крупные куски, но и способствует отрыву мельчайших частиц путем проникновения в них по микротрещинам. [c.302]

    Массы растворенных веществ, приносимые речными водами в моря, ежегодно достигают колоссальных цифр. Так, например, река Дон ежегодно вносит в Азовское море около 16 10 кг растворимых веществ, главным образом, кальциевых, магниевых и натриевых солей. При испарении воды в морях и океанах твердые вещества остаются и накапливаются. Поэтому морская вода содержит значительно большее количество растворенных солей, чем речная. В среднем в 1 л морской воды находится около 35 г растворенных солей поваренной соли 27,0 г, хлорида магния 3,6 г, сульфата магния 2,3 г, сульфата кальция 1,4 г и хлорида калия 0,7 г. [c.625]

    Основная масса фтора земной поверхности обязана своим происхождением горячим недрам Земли (откуда этот элемент выделялся вместе с парами воды в виде НР). Среднее содержание фтора в почвах составляет 0,02%, в водах рек — 0,00002% и в океане—0,0001%. Человеческий организм содержит фтористые соединения главным образом в зубах и костях. В вещество зубов входит около 0,01% фтора, причем большая часть этого количества падает на эмаль [состав которой близок к формуле СабР(Р04)з], В отдельных костях содержание фтора сильно колеблется. Для растительных организмов накопление фтора не характерно. Из культур- д ных растений относительно богаты им лук и чечевица. Обычное поступление фтора в организм с пищей составляет около 1 мг за сутки. [c.241]


    Свободного водорода на Земле почти нет, в атмосфере его содержание не превышает 5-10 %. Практически весь водород находится в связанном состоянии в составе многих минералов, углей, нефти, живых и растительных организмов, но самым распространенным его соединением является вода. Основная масса воды содержится в океанах и морях (1,42-10 т), много воды находится в виде льда (3,5-10 т), масса подземных вод оценивается в -8- Ю " т, а масса пресной воды озер и рек составляет 5- 10 " т, на долю атмосферной влаги приходится 1,4-10 т. [c.211]

    Соединения хлора содержатся в водах океанов, морен и озер. В небольших количествах они имеются в растительных и животных организмах. Хлор составляет 0,05% массы земной коры. [c.168]

    Вода распространена на нашей планете повсеместно (общий запас воды около 1,4 10 т). Основная масса воды сосредоточена в морях и океанах. На долю пресной воды приходится только 2%, причем боль- [c.720]

    На рис. 13 показаны результаты коррозионных испытаний углеродистой стали и сварочного железа на среднем уровне прилива в Тихом океане вблизи Зоны Панамского канала [19]. Средняя скорость общей коррозии, рассчитанная по потерям массы, для стали составила [c.35]

    Данные о коррозионном поведении углеродистой (нелегированной) стали и низколегированных сталей при 8- и 16-летней экспозиции на глубине 4,3 м в Тихом океане около Зоны Панамского канала представлены в табл. 12 и на рис. 29—31. Средние скорости коррозии, рассчитанные по потерям массы, для сталей, содержащих 2 и 5 % N1, примерно такие же, как и для углеродистой стали (см. рис. 29), но в не- [c.51]

    Пассивность никеля при полном погружении в морскую воду может поддерживаться в быстром потоке. Средняя скорость коррозии никеля в условиях погружения может достигать 130 мкм/год [4]. В неподвижной воде никель подвержен биологическому обрастанию и под образовавшимся слоем, так же как и в щелях, может происходить необратимая потеря пассивности. При 16-летней экспозиции в Тихом океане средняя скорость коррозии никеля, определенная по потерям массы, была равна 30,7 мкм/год (см. табл. 28) [40]. Однако уже после первого года экспозиции наблюдалась перфорация пластин толщиной 6,35 мм в результате локального питтинга. На больших глубинах средние скорости коррозии никеля составляли от <2,5 до 46 мкм/год [43]. В щелевых условиях наблюдалась перфорация образцов всего за 197 дней. При этом общая поверхностная коррозия была очень мала, а все коррозионные потери приходились на питтинг. Наблюдалась [c.81]

    На рис. 39 для сравнения показано изменение средней глубины коррозии, определенной по потерям массы, для сплава Монель 400 и ряда других известных металлов при 16-летней экспозиции в Тихом океане. Питтинговая коррозия при этом характеризовалась  [c.83]

    Ландшафт первых сухопутных участков земли был типично пулканический с крупными кратерами от бомбардировки метеори — тами. Большие плоские пространства были покрыты вулканически — пи конусами. Обширные площади между вулканами занимал сравнительно неглубокий океан, в котором в виде островов поднимались цепи вулканических конусов. Климатические пояса, подобные со — временным, отсутствовали. Отсутствовал также в атмосфере озонный пояс. Первыми составными частями земной коры были лавы и массы рыхлого материка вулканического пепла. За счет выветри — нания этого материала возникли механические осадки. [c.42]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

    Метод изотопного датирования позволяет выяснить даже больше. Лава на поверхности Океана Бурь моложе на 300 млн. лет, чем на поверхности Моря Спокойствия. Этого и следовало ожидать, поскольку Океан Бурь меньше покрыт метеоритными кратерами и, следовательно, должен быть моложе. Но различие в возрасте оказывается не так велико, как можно предположить по степени покрытия кратерами. Чтобы согласовать степень покрытия кратерами и возраст, приходится предположить, что столкновения с метеоритами происходили чаще в первый миллиард лет существования Луны, а затем постепенно стали происходить реже. Это хорошо согласуется с гипотезой, по которой Луна образовалась одновременно с Землей и другими планетами в результате аккреции массы пыли и оско. тков, двигавшихся вокруг Солнца. Частота бомбардировки метеорными телами, очевидно, была очень большой в течение периода аккреции, а затем мед- [c.433]

    Впадина Кариако представляет собой характерный бассейн указанного типа. Длина его около 240 м, ширина около 80 км. Расположен он у побережья Венесуэлы. Максимальная глубина достигает 1500 м. Этот бассейн окружен барьером высотой 200 м, затрудняющим водообмен с океаном, в результате чего ниже 200 м температура и соленость его становятся постоянными (16,9 °С и 36,6 °/ ) Однако только глубже 400 м в воде исчезают 0 и нитраты и появляется H S. В этой впадине была пробурена скважина, которая вскрыла осадки, представленные известковой глиной с большим количеством ОВ - около 2 % сухой массы. К сожалению, керн из верхней части осадков не был изучен, но, судя по приведенной характеристике газов в воде над впадиной, в ней отсутствовала верхняя окисленная зона, считающаяся основной зоной генерации СО , являющегося, по-видимому, источником жизнедеятельности метангенерирующих бактерий. Несмотря на отсутствие окислительной зоны в осадках рассмотренной скважины обнаружено большое количество как СН , так и СО , что свидетельствует об образовании значительных количеств СО не только в результате окисления ОВ, но и в большей мере в результате жизнедеятельности микроорганизмов при образовании 1TS. [c.50]

    Природные ресурсы. Содержание в земной коре составляет С1 4,5- 10-27о, Вг 3- Ю- %, I 10- %. Хотя содержание рассматриваемых галогенов в природе небольшое, их не причисляют к редким элементам, так как основная масса этих элементов сконцентрирована в воде морей и океанов. Хлор, в основном, встречается в виде выделяющихся из морской воды Na l, K l, K I-Mg b-бНгО. Соединения иода и брома также содержатся в морской воде, но в меньших количествах. Иод концентрируется в некоторых водорослях, в частности в ламинарии ( морская капуста ), из золы которых иногда получают Ь. Промышленным источником брома и иода в СССР служат воды ряда соленых озер и нефтеносных скважин. [c.473]

    Хлор (от греч. хлорос — зеленый) получил свое название в 1810 г., когда английский химик Г, Дэви впервые установил, что это простое вещество, В природе хлор широко распространен — 0,017% (по массе) в земной коре. Наиболее известные его минералы — галит Na l (поваренная соль, каменная соль), сильвин КС1, карналлит K l-Mg b eHoO и др. Мировые запасы каменной соли в недрах Земли составляют 3,5-10 т. Очень много хлоридов растворено а гидросфере, особенно з морях и океанах. [c.103]

    Процессы высыхания являются типичными реакциями самоокисления. При окислении образуются перекиси, которые и катализируют процесс. Количество перекисей быстро увеличивается в начале окисления, доходя до 5—6,5"о, затем, после некоторого максимума, быстро убывает. Продукты, образующиеся при аутоксидации масел, называют океанами. Под названием оксинов обобщают все твердые продукты, получающиеся прн высыхании и обладающие различными кислотными и иодными числами. Из них наиболее изучен линоксин из льняного масла. Он представляет собой эластичную массу, которая при дальнейшей аутоксидации становится твердой и хрупкой. Состав линоксина очень сложен. Например, анализ линоксина, полученного из льняной олифы, показал, что в нем содержатся одно- и двухосновные кислоты (23%), нена-сыш,енные высокомолекулярные кислоты (9,5%), растворимые и не растворимые в воде оксиновые кислоты (34%), а также глицерин (9%), вода (9%) и другие соединения не установленной природы. [c.240]

    Для изготовления термически стойких твердых изделий (изделия из полисилоксановых пластических масс) применяют полисилоксаны, содержащие арильные группы, например поли-метилфенилсил океан  [c.484]

    Важнейшим природным соединением хлора является хлорид натрия (поваренная соль) Na l, который служит основным сырьем для получения других соединений хлора. Главная масса хлорида натрия находится в воде морей и океанов. Воды многих озер также содержат значительное количество Na l — таковы, например, в России озера Эльтон и Баскунчак. Хлорид натрия встречается также и в твердом виде, образуя местами в земной коре мощные пласты так называемой каменной соли. В природе распространены и другие соединения хлора, например хлорид калия в виде минералов карналлита K l-Mg l2-6H2 0 и сильвина КС1. [c.477]

    Основными источниками, снабжающими атмосферу солями, являются моря и океаны, с поверхности которых вода захватывается воздушными массами и происходит ее испарение (соли при этом попадают в атмосферу в молекулярнодисперсном состоянии). Помимо этого, они насыщают атмосферу в результате выветривания горных пород. Ежегодно с поверхности океанов в атмосферу попадает около 1 млрд. т минеральных веществ, содержащихся в морской воде. Из этого количества, по приблизительным подсчетам, 10% уносится воздушными массами на материки. С удалением от берега концентрация солей уменьшается на расстоянии примерно 1500 км, в зависимости от рельефных условий и движения воздушных масс. По данным зарубежной литературы, на территории США ежегодно выпадает 4,3 кг соли на гектар, а в некоторых прибрежных местах — 114,08 кг га. Есть отдельные участки на земном шаре, где осаждается в год несколько тысяч килограмм на гектар хлорида натрия (в зоне Панамского канала, Лагосе, Нигерии и др.). Известно, что в Западной Австралии в течение пятидневной бури выпало более 50 кг га соли. [c.9]

    Чистая морская вода в океанах имеет почти постоянный состав и коррозионную активность. Ее pH не отклоняется далеко от 8,1, а концентрация солей, главным образом N301, составляет около 3,5 % по массе. Но в гаванях и других прибрежных местах морская вода может иметь другой состав. Это может происходить в результате притока речной воды или сбрасывания загрязненных отходов. Например, в Балтийском море, концентрация N301 падает по мере удаления от Атлантики (рис. 50). Портовая вода часто содержит соединения серы, которые значительно повышают ее коррозивность. При коррозионных испытаниях оказалось трудным получить искусственную морскую роду, которая имела бы такую же коррозивность, что и натуральная морская вода. Основная причина этого в том, что натуральная морская вода содержит микроорганизмы, которые отсутствуют в искусственной, и могут оказывать влияние на коррозию. [c.45]

    Большие глубины. На больших глубинах скорости коррозии углеродистых сталей, по-видимому ниже, чем в поверхностных слоях. Это показано в обзоре Рейнхарта [1], посвященном поведению железа и стали (рис. 18 и 19). В общем случае скорость коррозии падает со временем. В экспериментах, результаты которых представлены на рпс. 18 и 19, средние скорости коррозии, рассчитанные по потерям массы, изменялись в пределах от 15 до 200 мкм/год. Низкие скорости коррозии наблюдавшиеся на больших глубинах как в Тихом океане, так и в Атлантике, объясняются, по-видимому, низкой температурой и очень малой скоростью перемещения ннжних слоев воды. [c.41]

    Питтинговая коррозия. В целом низколегированные стали испытывают более сильную пит-тинговую коррозию, чем углеродистая сталь. Об этом свидетельствуют результаты 8-летних коррозионных испытаний в Тихом океане вблизи Зоны Панамского канала, представленные в табл. 16. Для сравнения приведены данные о средней суммарной глубине проникновения коррозии, средней глубине 20 наибольших питтингов и максимальной глубине питтинга. Считая среднее значение глубины, рассчитанное для 20 наибольших питтингов, более существенной характерпстикой, чем глубина максимального питтинга, можно сравнить среднюю глубину питтинга со средней суммарной глубиной корразии, рассчитанной по общим потерям массы. Для малоуглеродистой стали отношение этих двух величин при экспозиции на глубине 4,3 м равно 2,6. В случае низколегированных сталей, для части из которых наблю- [c.55]

    Говоря о морских конструкциях, из всех нержавеющих сталей рассматривают, как правило, только аустенитные. Однако в зоне прилива эти стали, как видно из табл. 17, обладают плохой стойкостью. При 8-летней экспозиции на среднем уровне прилпва в Тихом океане вблизи Зоны Панамского канала средняя скорость коррозии, рассчитанная по потерям массы, составила от 0,51 (ста.1ь 316) до 2,8 (сталь 304) мкм/год. В то же время максимальная глубина коррозии (питтинг) для трех исследованных сталей достигла за этот период от 0,76 до 2,79 мм. [c.60]

    В табл. 28 приведены данные о коррозионном поведении никеля и сплава Монель 400 на среднем уровне прилива в Тихом океане вблизи Зоны Панамского канала. За 16 лет средняя скорость коррозии никеля, определенная по потерям массы, составила всего 6,9 мкм/год, однако максимальная глубина питтинга достигла 3,07 мм, причем питтннгп были глубокими и широкими. Таким образом, плакирование никелем или электроосаладение никелевых покрытий для заиц1ты от коррозии в зоне прилива неэффективно. [c.79]

Рис. 39. Сравнительное коррозионное поведение различных металлов и сплавов при 16-летней экспозиции в медленно движущейся морской воде в Тихом океане вблизи Зоны Панамского канала (средняя глубина коррозии рассчитана по потерям массы) [40] В — Моиель 400 К — цинк I — свинец О — Си—ЗОН —1Ре О —5%-ная алюминиевая бронза Н — 6061 А1 Рис. 39. Сравнительное <a href="/info/1631984">коррозионное поведение различных металлов</a> и сплавов при 16-летней экспозиции в медленно движущейся <a href="/info/69623">морской воде</a> в <a href="/info/1330411">Тихом океане</a> вблизи Зоны Панамского канала (<a href="/info/1891014">средняя глубина</a> коррозии рассчитана по <a href="/info/63320">потерям массы</a>) [40] В — Моиель 400 К — цинк I — свинец О — Си—ЗОН —1Ре О —5%-ная алюминиевая бронза Н — 6061 А1

Смотреть страницы где упоминается термин Масса океана: [c.206]    [c.206]    [c.169]    [c.323]    [c.259]    [c.64]    [c.135]   
Динамика атмосферы и океана Т.2 (1986) -- [ c.32 ]

Динамика атмосферы и океана Т.2 (1986) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Океаны



© 2025 chem21.info Реклама на сайте