Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии природа

    Биологическое значение кислорода трудно переоценить. Только немногие низшие живые организмы (дрожжи, некоторые бактерии), называемые анаэробными, могут существовать при отсутствии кнсло-рода. Теплокровные животные погибают без кислорода в течение нескольких минут. Как животные, так и растения при дыхании поглощают атмосферный кислород, а выделяют оксид углерода (IV). Но у зеленых растений на свету происходит и обратный процесс — ассимиляция, при котором поглощается оксид углерода (IV), а выделяется кислород. В результате круговорота кислорода поддерживается постоянное содержание его в воздухе. Разумеется, круговорот кислорода в природе тесно связан с круговоротом углерода (см. схему)  [c.375]


    Различают анаэробные бактерии, жизнедеятельность которых может протекать при отсутствии кислорода, и аэробные - только в присутствии кислорода. Наибольшую опасность представляют анаэробные сульфатвосстанавливающие бактерии, которые широко распространены в природе и развиваются в илистых, глинистых и болотных грунтах, грязи, сточных водах, нефтяных скважинах, донных осадках, почве, цементе, где возникают анаэробные условия. Наиболее благоприятной средой для развития этих бактерий являются грунты с pH = 5-9 (оптимально 6-7,5) при температуре 25-30 °С. Бактерии восстанавливают содержащиеся в грунте сульфаты, используя образующийся при катодном процессе водород, до сульфид-ионов с выделением кислорода  [c.48]

Рис. 21.24. Упрощенная схема кругооборота азота а природе с указанием некоторых важнейших реакций с участием азота. Основным источником азота является земная атмосфера, где он содержится в виде N2. Атмосферный азот переходит к связанное состояние при разряде молний во время грозы и в результате жизнедеятельности бобовых растений. Соединения азота накапливаются в почве в виде ЫНз (или ЫН ), N0 и ЫО . Все они растворимы в воде и могут вымываться из почвы грунтовыми водами. Эти соединения азота используются растениями в процессе роста и переходят в организмы животных, поедающих растения. Экскременты животных, а также мертвые растения и животные под воздействием некоторых бактерий разлагаются с выделением N2 в атмосферу, чем и завершается кругооборот азота в природе. Рис. 21.24. <a href="/info/1472997">Упрощенная схема</a> <a href="/info/577526">кругооборота азота</a> а природе с указанием <a href="/info/1744065">некоторых важнейших реакций</a> с <a href="/info/508929">участием азота</a>. <a href="/info/66734">Основным источником</a> азота является <a href="/info/861085">земная атмосфера</a>, где он содержится в виде N2. <a href="/info/631491">Атмосферный азот</a> переходит к <a href="/info/261020">связанное состояние</a> при <a href="/info/1732163">разряде молний</a> во время грозы и в результате жизнедеятельности <a href="/info/590471">бобовых растений</a>. <a href="/info/25451">Соединения азота</a> накапливаются в почве в виде ЫНз (или ЫН ), N0 и ЫО . Все они растворимы в воде и могут вымываться из почвы <a href="/info/150581">грунтовыми водами</a>. Эти <a href="/info/25451">соединения азота</a> используются растениями в <a href="/info/659642">процессе роста</a> и переходят в <a href="/info/69800">организмы животных</a>, поедающих растения. <a href="/info/1805761">Экскременты животных</a>, а <a href="/info/1279966">также мертвые</a> растения и животные под <a href="/info/1903725">воздействием некоторых</a> бактерий разлагаются с выделением N2 в атмосферу, чем и завершается <a href="/info/577526">кругооборот азота</a> в природе.
    А 2. Опишите круговорот фосфора в природе, роль в нем бактерий. [c.73]

    Низший парафиновый углеводород — м ет а и — образуется в природе в результате происходящих под действием бактерий процессов разложения целлюлозы (метановое брожение). Он заключен в пустотах каменноугольных пластов, находится в недрах земли в составе нефтяных газов и, наконец, образуется при процессах сухой перегонки дерева, торфа и угля. Поэтому метай всегда содержится в больших количествах в светильном газе. [c.30]


    Различают анаэробные бактерии, жизнедеятельность которых может протекать при отсутствии кислорода, и аэробные — только в присутствии кислорода. В природе наиболее широко распространены сульфатовосстанавливающие анаэробные бактерии, обычно обитающие в воде, грязи, сточных водах, нефтяных скважинах, донных осадках, почве, цементе. Наиболее благоприятной средой для развития этих бактерий являются почвы с рН = 5-ч-9 (оптимально 6—7,5) при 25—30° С. В результате действия сульфатовосстанавливающих бактерий образуется сероводород, который, соединяясь с железом, дает сернистое железо РеВ. [c.49]

    В природе существуют микроорганизмы, вызывающие процесс денитрификации, т. е. восстановление азотнокислых солей до газообразного азота. Эти бактерии относятся к группе факультативных анаэробов. Процесс денитрификации протекает при наличии в среде безазотистых веществ углеводов, клетчатки, солей летучих жирных кислот и др. Такие вещества окисляются освободившимся из нитратов кислородом. Очевидно, в этом заключается энергетический смысл процесса. Схематически процесс денитрификации можно записать уравнением [c.265]

    Монооксид азота поступает в атмосферу в результате процессов сгорания, протекаюш их в природе, п в виде продукта жизнедеятельности бактерий. Общее количество оксидов азота из природных источников в мировом масштабе оценивается в 450 млн. т/год. [c.12]

    Определение цистрона связано еще с одним важным понятием генетики — доминантностью признака. В классической генетике высших организмов всегда происходит выбор при фенотипическом проявлении одного из двух аллеломорфов каждого признака. При этом проявляется доминантная аллель, но природа доминанта совершенно непонятна. В биохимической генетике бактерий природа доминанта вполне ясна. Если диплоидная зигота одновременно содержит два аллеломорфа цистрона А, А" и А , означающих способность и неспособность к синтезу определенного фермента, то в итоге клетка будет содержать генетическую информацию о синтезе этого фермента, т. е. свойство синтезировать фермент будет всегда доминантным. [c.314]

    При определенных условиях при очистке воды мы можем целиком полагаться на природу. Чистая дождевая вода является наилучшим источником чистой воды. Если вода проходит через различные породы достаточно долго, то бактерии успевают разложить в ней все органические вещества природного происхождения. Прохождение через песок и гравий удалит все взвешенные вещества. Однако при перегрузке природные системы не могут качественно справляться с задачей очистки. [c.81]

    Изучался процесс очистки воды от микроорганизмов ультрафильтрацией. Разделению подвергались растворы 6 различных типов микроорганизмов при концентрациях до 160 000 единиц на кубической миллилитр. В десяти опытах очищенная вода была полностью стерильна и лишь в одном в ней были обнаружены бактерии, что авторы объясняют возможным дефектом мембраны или случайным попаданием бактерий в систему [6]. Данные, приведенные в работе [5], показали, что на мембранах отечественного производства оказывается возможным проводить очистку сточных вод от самых различных по природе растворенных веществ. Ниже приведены примеры применения обратного осмоса и ультрафильтрации в схемах очистки сточных вод ряда производств. [c.306]

    Кроме процессов, приводящих к полному разрушению растительного материала, в природе известны процессы разложения органической материи, вызванные также бактериями и грибками, которые не идут до конца и приводят к образованию твердых горючих ископаемых. [c.40]

    Среди разнообразных происходящих в природе процессов, связанных с окислением — восстановлением, испускание видимого света живыми организмами— одно из наиболее таинственных природных явлений. Люминесцирующие бактерии, черви и изумительные по красоте светлячки всегда были объектом пристального внимания биохимиков. Возникает естественный вопрос какой тип [c.426]

    Микробиологические загрязнения (бактерии, грибйи, пирогенные вещества) попадают в нефтяные масла тоже, как правило, из атмосферы. Микроорганизмы, для которых углеводороды нефти могут служить питательной средой, широко распространены в природе. В настоящее время известно более 100 видов таких микроорганизмов, содержащихся в почве, сточных водах, органических остатках растительного и животного происхождения и т. п. Попадая вместе с атмосферной пылью в масла, микроорганизмы начинают там размножаться. Росту микроорганизмов способствуют присутствие воды, воздуха и растворенных в воде минеральных солей, а также повышенная температура. Количество микробиологических загрязнений, способных образовываться в нефтяном масле, оценивают экспериментально по методике, предложенной в работе [6]. [c.13]


    Следует отметить важную роль, которую играют метанообразующие бактерии в круговороте веществ и энергии в природе. Они ассимилируют двуокись углерода, окись углерода и водород, образуя из них углеводород, метан и свое клеточное вещество. [c.317]

    ВЫЯСНЯЮТ, что некоторая часть аммиачных соединений подвергается в почве окислению до азотной кислоты, которая при взаимодействии с карбонатами и другими солями в почве образует нитраты, снова используемые растениями. Этот процесс, называемый нитрификацией, отмечают на схеме (кадр 11) и его определение записывают справа по кадру 12. Учитель сообщает, что этот процесс происходит благодаря деятельности особых бактерий, живущих в почве. Здесь же рассказывают о нитрозо- и нитробактериях (кадр 13). Суть действия нитрифицирующих бактерий сводится к процессу, происходящему при окислении аммиака в технике, когда из него получают азотную кислоту. Таким образом, природный и технический процессы почти тождественны, их объединяют под цифрой 4 и записывают в правой части листа (кадр 14). Тем самым мы еще раз обращаем внимание учащихся на пример активного вмешательства человека в круговорот азота в природе. Это вмешательство может быть дополнено еще несколькими источниками связывания атмосферного азота и в схеме отмечают стрелкой 6 (кадр 15). [c.128]

    Являясь одним из важнейших видов химического сырья, атмосферный азот служит продуктом для получения аммиака, значительная часть которого в виде различных удобрений попадает в почву, входит в обший баланс круговорота азота в природе (на правой стороне листа он обозначен под цифрой ба). Цикл замкнулся. Но он был бы неполным, если бы не учитывать деятельность почвенных бактерий, которые переводят свободный азот в соединения, обогащая тем самым почву связанным азотом. Эти бактерии носят название азотобактерий. Они способны переводить свободный азот в аммиак в присутствии органических веществ. На правой стороне листа этот процесс записывают в виде уравнения (66). При благоприятных условиях азотобактерии способны накопить за год около 50 кг связанного азота на 1 га. Отмечают деятельность клубеньковых бактерий, живущих на корнях бобовых растений клевера, люцерны, гороха и др. Эти бактерии, питаясь соками растений, в то же время доставляют последним связанный азот и таким образом обогащают им почву. Каждое растение семейства бобовых — это своего рода лаборатория по связыванию атмосферного азота (на схеме отмечается бб). Четверть связанного азота остается в почве в корневой системе, тем самым обогащая почву. [c.129]

    Существует много бактерий, способных разлагать сахар с образованием молочной кислоты. Бухнер показал, что они содержат энзимы, лактацидазы, вызывающие расщепление углеводов. При этом в зависимости от природы бактерии и сахара образуется либо рацемат, либо одна из двух оптически активных форм молочной кислоты. [c.323]

    Круговорот азота в природе. Почти весь азот почвы находится в форме недоступных растениям органических веществ, которые минерализуются, т. е. разлагаются под действием бактерий на более простые минеральные соединения — аммиак, оксид углерода (IV), воду, соли. Этот первоначальный процесс выделения аммиака называют аммонизацией. Далее аммиак, взаимодействуя с кислотами почвы, образует соли, усвояемые растениями. Но большая часть образовав- [c.353]

    Стероиды являются производными тетраци-клического углеводорода циклопентанопергидрофенантрена. В эту группу входят стерины, некоторые сапогенины, алкалоиды, сердечные гликозиды и гормоны. Очевидно, те или иные стероиды присутствуют у всех живых организмов, исключая, возможно, бактерий. Природа и распространение стероидов, встречающихся в относительно больших количествах, изучены достаточно полно. К настоящему времени как у растений, так и у животных обнаружено чрезвычайно большое число различных стероидов. [c.421]

    При разложении органической материи большая часть азота усваивается бактериями и животными, но некоторая часть возвращается в атмосферу. На рис. VIII.6 показан круговорот азота в природе. [c.514]

    Хитин - сложный полисахарид, широко распространенный в природе. Он выполняет в основном физиологическую функцию опорного панциря у различных насекомых, т. е. формирует их экзоскелет. Этот полимер встречается также у червей и бактерий. В растительном мире хитин обнаружен в небольших количествах в фибах и лишайниках. Относительно чистый хитин находят в панцире ракообразных и в крыльях майского жука. [c.329]

    Рибит (адонит) найден в природе в листьях Adonis vernalis в связанном виде входит в состав рибофлавина (витамина Вг) и клеточных стенок многих бактерий. Рибит получен каталитическим гидрированием рибозы или ее восстановлением амальгамой натрия. [c.11]

    Воски, хотя и широко распространень в природе, однако являются мнкрокомпонентами по отношению < массе живого вещества. Вследствие малой растворимости в воде, а также химической и бактериальной стойкости воски выполняют функцию защитных агентов, будучи локализованы на поверхности листьев, стеблей и кожицы плодов растений, а также оболочек бактерий. В химическом отношении они представляют собо11 смеси сложных эфиров высокомолекулярных одноатомных спиртов и одноосновных [c.31]

    В природе ионы кобальта встречаются в степени окисления II и III, однако наиболее важное биологическое соединение кобальта— это витамин В12, или кобаламин, в котором присутствует Со(1П) [256] (рис. 6.10). Кобаламин и близкие к нему вещества выполняют разнообразные биологические функции, особенно это касается бактерий. Он необходим для человеческого организма и, вероятно, для больщинства животных и растений. Важную роль он играет в реакциях с участием остатков углеводов, жиров и белков для выработки in vivo. Пернициозная анемия — тяжелое заболевание, встречающееся у пожилых людей. Эта болезнь у млекопитающих обычно сопровождается повышенным выделением с мочой метилмалоновой кислоты. В настоящее время эту болезнь успешно лечат инъекциями витамина В12. [c.381]

    При газобактериальной съемке определяются бактерии, окисляющие углеводородные газы и свидетельствующие, следовательно, о присутствии этих газов. При люминесцентно-битуминологической съемке последуют битумы, природа которых в той или иной степени может быть связана с мигрирующими из залежи углеводородами. [c.94]

    Процесс образования угля в природе, называемый углефикацией или карбонизацией, разделяется на биохимическую (диагенезис) и геологическую (метаморфизм) стадии [63], На стадии диагенезиса углеводородные соединения растительных остатков (целлюлоза, лигнин, глюкоза, крахмал и др.) в результате реакций окисления кислородом воздуха и кислородом, содержащимся в проточных водах, а также под воздействием анаэробных бактерий превращались в гомогенизированное вещество — гумус. Б гумусе продолжалось взаимодействие входящих в его состав органических и привнесенных водой неорганических компонентов. Стадия метаморфизма проходила лосле образования над отложившейся органической массой достаточно мощных осадочных слоев неорганических веществ, т. е. на большой глубине и при высоких давлениях и температурах без доступа воздуха. В таких условиях органическое вещество уплотнялось и обезвоживалось, из него выделялся метан, что приводило к уменьшению содержания кислорода и водорода и росту содержания углерода. [c.64]

    В диафильме рассматриваются основные химические и биологические процессы, лежащие в основе круговорота азота в природе. Особая роль уделена преобразующей деятельности человека, который, вмешиваясь в естественный процесс круговорота азота в природе, повышает урожайность сельскохозяйственных культур путем внесения в почву удобрений. Показана роль азотофиксирующих, нитрифицирующих и денитрифицирующих бактерий в круговороте азота в природе. По ходу демонстрации кадров учащиеся записывают уравнения реакций, лежащих в основе связывания атмосферного азота. [c.125]

    Рассмотрим, каким образом в природе несимметричный мак-ромолекулярный белковый комплекс участвует в синтезе этого циклического полниептида без помощи рибосом. Механизм синтеза, присущий лишь простым организмам, подобным бактериям, расшифрован биохимиком Липманом. [c.62]

    Хитин имеет характер сложного полисахарида. Он распространен в природе как роговое вещество у артроподов, моллюсков, плеченогих и Вгуогоеп, встречается у червей и бактерий. В растительном мире [c.458]

    Активацию водорода бактериями следует, по-видимому, отнести к гомогенному катализу, поскольку ответственными за активацию являются, вероятно, отдельные молекулы энзима. Относительно природы этого энзима пока не существует единого мнения, хотя исследования торможения [39] указывают на то, что гидрогеназа является железопорфириновым энзимом. Наилучшие результаты в отношении выяснения. механизма действия энзимов могут быть, по-видимому, достигнуты при иоследовании бескле-точных вытяжек бактерий. Эта область в настоящее время усиленно изучается [40—44]. [c.214]

    Кроме разложения клетчатки внимание ученых привлекло и разложение дру1их стойких органических соединений, Среди них наиболее важное значение для круговорота углерода в природе имеют углеводороды, жиры и близкие к ним соединения. Много внимания изучению процесса разложения соединений, содержащих углерод, было уделено русским исследователем В. О. Таусоном. Ему удалось выделить бактерии, которые разлагают углеводороды нефти бензин, керосин, различные парафины, а также бензол, ксилол, кумол, фенантрен и др. Все эти соединения оказались хорошими источниками углерода для многих групп бактерий. [c.242]

    Природные аэрозоли — облака и туманы — ймеют огромное значение для метеорологии и сельского хозяйства, поскольку они определяют выпадение осадков и в значительной степени обусловливают климат того или иного района. Такие природные явления, как дождь или снег, гроза, радуга, целиком определяются наличием в атмосфере аэрозолей. Известную роль играют аэрозоли н в биологии — пыльца растений, споры бактерий и плесени, а также легкие семена переносятся в природе. в форме аэрозоля. [c.364]

    Круговорот азота в природе. При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты  [c.441]

    Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, в111зывая образование характерных вздутий — клубеньков , почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. [c.441]

    Урок начинается с напоминания учащимся об огромном значении азота в жизни живой природы как составной части белка. Приводятся слова Ф. Энгельса Без белка нет жизни . Рассказывается, что в состав пищи человека и животных входит белок. Растения не могут использовать для своего питания свободный азот (хотя его много в воздухе), так как им необходим только связанный азот (входящий в состав каких-либо соединений). Лищь некоторые бактерии усваивают азот из воздуха, связывают его в соединения и создают белковые вещества. [c.126]

    Н23 -f О2 = 2Н2О + 23 + 127 ккал Выделяющаяся сера откладывается в телах серобактерий, причем содержание ее может доходить до 95% их общей массы. Способствуя уничтожению вредного и для животных, и для растений сероводорода, эти бактерии играют важную положительную роль в жизни живой природы. [c.343]

    Тиооктановая кислота (а-липоевая кислота) — встречающийся в природе дисульфид, который является кофактором, необходимым для ферментативного окисления в бактериях пировино-градной кислоты до уксусной. В этой реакции дисульфид — окислитель, он восстанавливается в соответствующий тиол, под действием восстановителя идет обратная реакция  [c.93]


Библиография для Бактерии природа: [c.64]   
Смотреть страницы где упоминается термин Бактерии природа: [c.416]    [c.416]    [c.58]    [c.189]    [c.100]    [c.163]    [c.196]    [c.115]    [c.41]    [c.280]    [c.191]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.100 , c.102 , c.103 , c.104 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Автотрофные бактерии роль в природе



© 2025 chem21.info Реклама на сайте