Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сопряжение гетероциклических соединениях

    Наиболее важными типами реакций сопряженных ароматических и гетероциклических соединений являются реакции замещения (электрофильное, нуклеофильное и радикальное) и реакции присоединения. Рассмотрим ИРС, применяемые для описания каждого из этих типов реакций. [c.319]

    К ароматическим системам принято относить имеющие плоское строение молекулы карбо- и гетероциклических соединений, а также ионы, в которых имеется определенное число кратных углерод-углеродных связей, находящихся в сопряжении друг с другом или с -.электронами входящего в цикл гетероатома (кислород, азот или сера). [c.308]


    Химические свойства. Вследствие того, что электроотрицательности серы и углерода равны, тиофен по химическим свойствам ближе к бензолу, чем другие пятичленные гетероциклические соединения. Однако из-за несколько меньшей энергии сопряжения и большей насыщенности диеновой части молекулы электронной плотностью способность тиофена к реакциям электрофильного замещения несколько выше, чем у бензола. [c.517]

    В аммиаке орбитали атома азота представлены тремя 2р-орби-талями, оси которых взаимно перпендикулярны, и 25-орбиталью, занятой неподеленной парой электронов. В соединениях может наблюдаться тригональная 5р2-гибридизация, в результате которой образуются три валентные орбитали, а неподеленная пара занимает четвертую орбиталь. В гетероциклических соединениях, например в пиридине или пирроле, атом азота находится в состоянии, близком к тригональной р -гибридизации. В молекуле пиридина две из трех ар -орбиталей используются для ст-связи атома азота с соседними атомами углерода, третья, занятая неподеленной парой, в связывании не принимает участия. Все эти орбитали лежат в плоскости молекулы. Пятый электрон азота находится на р-орбитали ее ось перпендикулярна плоскости молекулы и параллельна плоскостям р-орбиталей атомов углерода. Этот электрон азота и принимает участие в сопряжении с л-системой атомов углерода кольца. [c.175]

    Возвращаясь к коферментам и простетическим группам, к нуклеотидам и порфиринам, мы должны отметить то, что их объединяет— биологическое значение сопряженных гетероциклических систем, содержащих преимущественно азот. В биологии мы встречаемся с производными пиридина, пиримидина и пурина, с пиррольными соединениями. К последним относятся, в частности, и желчные пигменты, основная структура которых подобна раскрытому порфириновому кольцу [c.100]

    Большинство гетероциклических соединений при взаимодействии с алкиллитиевыми соединениями или амидами лития превращается в результате отщепления протона в соответствующие литиевые производные. Хотя и свободные анионы никогда при этом не образуются, легкость литиирования связана с кислотностью атома водорода при атоме углерода и, соответственно, со стабильностью сопряженного основания (карбаниона) [61]. Прямое литиирование в результате депротонирования напрямую связано с катализируемым основанием протонным обменом [62] при использовании таких реагентов, как метилат натрия. Именно такие процессы, проводимые при температурах, значительно более высоких, чем требуется для прямого литиирования, впервые продемонстрировали возможность селективного проведения процессов депротонирования и их использования в синтетических целях. Следует помнить, что кинетические факторы и положение кислотного равновесия не всегда способствуют одному и тому же направлению процесса термодинамически более стабильные продукты депротонирования обычно образуются при повышенной температуре и при проведении реакции в более полярных растворителях. [c.48]


    Однако если в цикле имеется сопряженная система двойных связей, то такие гетероциклические соединения по своей устойчивости и химическим свойствам похожи на соединения ароматического ряда. Поэтому эти гетероциклы называются ароматическими гетероциклами. [c.354]

    Более сложная картина наблюдается для ароматических и гетероциклических соединений, адсорбция которых может сопровождаться л-электронным взаимодействием с поверхностью металла. Такому взаимодействию естественно благоприятствует наличие положительных зарядов на поверхности электрода и, наоборот, прп достаточно большом отрицательном заряде поверхности в результате отталкивания л-электронов происходит изменение ориентации адсорбированных органических молекул. Таким образом, поверхностная активность органических веществ, молекулы которых обладают системой сопряженных л-электронных связей, характеризуется наличием двух адсорбционных состояний. Эту особенность и отражает кривая 3 на рис. 2.7, состоящая из двух участков, каждый из которых дает зависимость — АС° от Е для соответствующей ориентации молекул адсорбата. [c.47]

    В качестве гетероатомов чаще всего встречаются азот, кислород и сера. Гетероциклические соединения делят по размерам цикла и по числу гетероатомов в цикле. Наиболее важными являются пяти- и шестичленные гетероциклы с одним и двумя гетероатомами. Типичные гетероциклические соединения обладают ароматическим характером у пятичленных циклов неподеленные электронные пары гетероатомов вступают во взаимодействие с я-электронами двойных связей, образуя единую шестиэлектронную сопряженную систему, аналогичную таковой бензола, удовлетворяющую правилу Хюккеля (т. е. содержащую 4 + 2я- и р-электронов). [c.148]

    В дальнейшем химия и промышленное производство оптических отбеливающих веществ быстро развивались. Было синтезировано большое количество оптических отбеливающих веществ, принадлежащих к различным классам ароматических и гетероциклических соединений с развитой системой сопряженных двойных связей. К 1963 г. мировой ассортимент оптических отбеливающих веществ уже включал свыше 200 различных наименований с общим выпуском свыше 7000 т в год. [c.201]

    По мере синтеза и изучения соединений с сопряженными связями понятие ароматичности было перенесено на многочисленные гетероциклические соединения, часть которых схематически изображена на рис. 21.16 (/—7). В этих молекулах, как и в молекуле бензола, образуется сопряженная система из шести л-электронов, хотя в вершинах и располагается только пять атомов. Здесь в образовании делокализованной я-орбитали принимают участие четыре р-электрона атомов углерода и два р-электрона атома кислорода (серы, азота). Энергия сопряжения в этих молекулах также достаточно велика, хотя и несколько меньше, чем в бензоле. Например, в молекуле тиофена эта энергия равна 130 кДж/моль, в молекулах пиррола и фу рана — около 96 кДж/моль. [c.260]

    Среди циклических сопряженных систем наибольший интерес представляет группа соединений, отличительной чертой которых является повышенная термодинамическая устойчивость по сравнению с сопряженными открытыми системами. Эти соединения обладают и другими особыми свойствами, совокупность которых объединяют общим понятием ароматичности. К ним, в первую очередь, относится способность таких формально ненасыщенных соединений вступать в реакции замещения, а не присоединения, устойчивость к действию окислителей и температуры. Циклы этих систем по химическому строению могут быть только углеродными (арены и их производные) или содержать еще гетероатомы (гетероциклические соединения), и в них может осуществляться как л, Л-, так и р, л-сопряжение. [c.45]

    В химии карбоциклических соединений основное внимание уделено ароматическим соединениям и характерным для них реакциям электрофильного замещения. В разделе гетероциклических соединений охарактеризованы их классы и отдельные наиболее важные представители. Здесь необходимо обратить внимание изучающих на то, как меняется химический характер соединений при переходе от алифатических систем к системам, полностью сопряженным и ароматизированным. [c.13]

    Ряд специфических свойств гетероциклических соединений проявляется в том случае, если в цикле имеется сопряженная система двойных связей, например в циклах фурана и пиридина  [c.577]

    Такие соединения имеют ароматический характер. Для гетероциклических соединений, в цикле которых имеются сопряженные двойные связи, при действии галоидов, азотной и серной кнслот (и других подобных реагентов) характерны не реакции присоединения, а реакции замещения. [c.577]

    Эта методология позволяет получать различные гетероциклические соединения с использованием в качестве предшественников интернальных перфторолефинов или систем с сопряженными кратными связями. Можно надеяться, что число примеров использования этого подхода будет возрастать и новая информация позволит сделать более глубокие обобщения. [c.82]


    Напротив, для пятичленного гетероциклического соединения пиррола (2.29) характерно плоскостное сопряжшие электронной пары атома азота с тг-электронами бутадиеиовой-1,3 системы в результате такого сопряжения образуется находимый для ароматичности секстет тг-электронов. Спектр пиррола резко отличается от спектра бензола. [c.36]

    Реакция Дильса. Дильс с сотрудниками подробно изучили большое число чрезвычайно интересных реакций, в которые вступают, с одной стороны, такие ненасыщенные соединения, как хиноны, ненасыщенные альдегиды, ненасыщенные кислоты, их эфиры и ангидриды, а с другой стороны, соединения, содержащие сопряженные двойные связи, например бутадиен, изопрен, циклопентадиен и даже гетероциклические соединения, а именно фуран, пиррол и др. i . За исключением отдельных случаев в процессе реакции происходит образование шестичленного Цикла. Следующие схемы дают понятие об этом типе реакций  [c.44]

    Если ароматическое соединение содержит альдегидную или кетоиную группу в положении, удобном для замыкания шестичленного цикла, то обработка кислотой приводит к циклодегидратации. Эта реакция является частным случаем реакции 11-24, но в этом случае дегидратация почти всегда проходит так, что образуется сопряженная с ароматическим кольцом двойная связь. Этот метод имеет общий характер и широко применяется для синтеза как карбоциклических, так и гетероциклических соединений. В качестве реагента широко применяется полифосфорная кислота используются и другие кислоты. Вариант этой реакции, известный под названием реакции Брэдшера (примеры см. [302]), позволяет проводить реакцию циклизации ди-арилметанов, содержащих карбонильную группу в орто-положении, в производные антрацена. В данном случае по крайней мере формально имеет место 1,4-дегидратация. [c.368]

    Научная деятельность академика Н. Д. Зелинского многогранна. Он одним из первых осуществил синтезы индивидуальных углеводородов нефтей. Первый синтетический нафтен, полученный им в 1895 г., был 1,3-диметилциклогексан. Он синтезировал также циклопропановые, циклобутановые, циклопентановые и другие углеводороды, в том числе с сопряженными двойными связями, а также бициклические углеводороды (спираны). Важнейшим направлением исследований Н. Д. Зелинского было изучение каталитических превращений углеводородов. Ему удалось найти эффективные катализаторы, обеспечивающие избирательность реакций дегидрогенизации. В частности, Н. Д. Зелинский применял платину и палладий, нанесенные на активированный уголь. В 1934 г. Н. Д. Зелинский совместно с Н. И. Шуйкиным открыл, что ароматические соединения могут быть получены каталитической дегидрогенизацией парафиновых углеводородов. Это направление в дальнейшем было развито Б. А. Казанским, А. Ф. Платэ и др. Прп дегидрогенизации низших углеводородов были получены олефины (1949). Н. Д. Зелинскому также принадлежат исследования по химии гетероциклических соединений. [c.292]

    К реакциям, в которых одновременно проявляется бифункциональный характер нитрильных групп, относится также реакция циклоприсоединения (см. гл. 16). Эта реакция заключается во взаимодействии обоих атомов нитрильной группы с сопряженными диенами (1,4-присоединение) и с 1,3-диполями (1,3-присоедине ние) и приводит к образованию гетероциклических соединений Однако взаимодействие с 13-диполями идет главным образом в случае цианистых соединений с высокой электрофильной [c.27]

    Гетероциклические соединения. В условиях оксосинтеза тиофен очень медленно восстанавливается в тиоциклопентан. Алкилзамещенные тиофены восстанавливаются легче тиофена. Фуран реагирует подобно диенам с сопряженными двойными связями, а именно одна двойная связь гидрируется, а вторая гидроформилируется, в результате получается 2-тетрагидрофурфуриловый спирт. Реакция с азотистыми соединениями очень усложняется, так как эти вещества взаимодействуют с карбонилами кобальта. [c.297]

    Все это связано с особенностью структур этих гетероциклических соединений. У них в пятичленных кольцах четыре тг-электрона двух сопряженных двойных связей и неподеленная электронная пара гетеро-атома (О, S, N) образуют секстет тс-электронов, что укладывается в рамки правила ароматичности Хюккеля. (4п-г2) л-электронов в замкнутой системе сопряженных кратных связей (где п - целое нео фицатель-ное число). Таким образом, эти шесть тс-электронов ко,ища образуют делокализованную систему, как в бензоле  [c.248]

    Кроме бензола, у которого в сопряжении находятся л-электроны кратных связей С—С, к ароматическим системам с п = 1 относятся некоторые гетероциклические соединения, например фуран, пиррол и тиофен, в которых кратные углерод-углеродные связи находятся в сопряжении с неподеленными парами р-электронов таких гетероатомов, как кислород (фуран), азот (пирро.л) и сера (тиофен). В этих соединениях гетероатом связан с двумя атомами углерода, находящимися в состоянии 5р -гибридизации, вследствие чего возникает мезомерное взаимодействие его р-электронов с сопряженными связями С = С. В результате эти пары р-электронов гетероатомов оказываются включенными в характерный для моноциклнческих ароматических систем секстет электронов. [c.310]

    Все эти условия хорошо выполняются для пяти- и шестичлен-ных гетероциклических соединений, которые содержат замкнутую систему из шести я-электронов. Для пятичленных гетероциклов эта система состоит из четырех я-электронов двух двойных связей цикла и одной электронной пары гетероатома. В шестичленных гетероциклах в сопряжении участвуют шесть я-электронов трех двойных связей  [c.354]

    Пяти- и щестичленные гетероциклические соединения содержат замкнутую систему из шести л-электронов. Для пятичленных гетероциклов эта система состоит из четырех я-электронов двух двойных связей цикла и однбй электронной пары гетероатома (О, N. 8). В шестичленных гетероциклах в сопряжении участвуют шесть л-электронов трех двойных связей. Поэтому гетероциклические соединения, подобно бензолу и его производным, склонны в большей степени к реакциям замещения. По легкости, с которой фуран, тиофен, пиррол и пиридин вступают в реакции электрофильного замещения, их можно расположить в ряд (сравнивая с бензолом)  [c.107]

    Явление сопряжения существенно изменяет физические и химиче ские свойства гетероциклического соединения. Так, вследствие сопря жения дипольный момент фурана значительно меньше, чем родствен кого ему тетрагидрофурана (2,3 10" Кл м против 5,6 10 Кл-м) В химическом отношении ароматические гетероциклы подобны бензо лу и более склонны к реакциям замещения, а не присоединения Вместе с тем благодаря наличию гетероатомов они имеют некоторую специфику. В частности, вследствие высокой электроотрицательности атомов О, 8, N равномерность распределения электронной плотности в кольце нарупгается, а связи гетероатом — углерод и молекула в целом поляризуются. [c.316]

    Проблема элеетронного и пространственного строения молекулы бензола хорошо известна. Особая термическая устойчивость бензола и его производных, стремление молекул этих соединений сохранять в различного рода химических превращениях неизменной свою главную структурную единицу — шестичленное сопряженное кольцо — привели к выделению этих соединений в самостоятельный, широко разветвленный класс ароматических соединений. Сопряженные циклические углеводороды и гетероциклические соединения, характеризующиеся свойствами, подобными бензолу (термодинамической стабильностью и склонностью к реакциям замещения, но не присоединения или расщепления), названы бензоидными, а соединения, не обладающие этими свойствами, — небензоидными. Наконец, еще более общее и концептуально важное понятие органической химии — ароматичность — также выведено из анализа свойств бензола и его аналогов. [c.265]

    Оптическими ог6еливател>гми являются ароматические и гетероциклические соединения с различными системами сопряженных двойных связей. Для натуральных и синтетических волокои используются производные кумарина, имидоэола, оксазола и др. [c.39]

    В среде диметилсульфоксида и гексаметилфосфамида удалось осуществить катализируемую грег-бутоксид-анионом реакцию присоединения ароматических гетероциклических соединений к ненасыщенным углеводородам с сопряженными кратными связями (гомогенное алкилирование). Известна также катализируемая основанием реакция изомеризации алкинов, протекающая в этанольном растворе гидроксида калия. По своей депротонирующей способности эти системы занимают промежуточное положение между системами гидроксид-ион — вода и амид натрия — аммиак. В роли депротонирующего агента может выступать также анион диметилсульфоксида. [c.83]

    Этот тип фрагментации характерен для карбо- и гетероциклических соединений, в М+ которых на первом этапе распада происходит простой разрыв цикла около атома, на котором локализован заряд, в результате чего происходит разделение катионного и радикального центров. Сдвиг Н-атома может проходить через переходные состояния различных размеров. Образующиеся попы энергетически выгодны, так как заряд в них делокализуется либо за счет аллильной двойной связи, либо за счет системы сопряженных связей. [c.22]

    Нуклеофильный катализ сопряженными основ шиями (Nu") характерен и для реакций присоединения NuH к гетероциклическим соединениям с малыми циклами. Например, реакция [c.447]

    Для всех остальных карбоциклических ароматических соединений и гетероциклических соединений углерод-углеродные связи различаются по длине и могут быть как длиннее, так и короче, чем в бензоле. Так, например, в нафталине связь С(1)—С(2) укорочена до 1,371 А, а связь С(2)—С(3) удлинена до 1,41 А по сравнению с бензолом, так же как и связь С(1)-С(9) — 1,42 А. Та же закономерность наблюдается в антрацене, тетрацене, пентацене и других ценах, пае связь С(1)-С(2) значительно короче, чем связь С(2)-С(3). В фенантрене длина связи С(9)—С(10) составляет всего 1,350 А, тогда как длина связи С(10)—С(10а) равна 1,453 А. В ароматических [18]-, [22]- и других мостиковых аннуленах углерод-углеродные связи также не равны по длине. Таким образом, эквивалентность углерод-углеродных связей не может рассматриваться в качестве серьезного критерия ароматичности циклических сопряженных полиенов. [c.363]

    Правило Хюккеля (4п+2) и его толкование в рамках теории МО успещно объясняет ароматичность также и гетероциклических соединений, имеющих плоские молекулы и системы сопряженных двойных связей в них. Приведем примфы  [c.149]

    В сильнокислой среде пятичленные гетероциклические соединения утрачивают ароматичность, так как при этом из ароматического секстета уходит пара электронов гетероатома. Это свойство называют ацидо-фобиостью (боязнь кислоты). В результате утраты ароматичности такие гетероциклы по своей ненасыщенности становятся подобны сопряженным диенам и легко полимеризуются (осмоляются) в сильнокислой среде  [c.151]

    Метод hemi al Abstra ts . Если соответствующее гомоциклическое соединение частично или полностью гидрогенизировано и если степень гидрогенизации обозначена в его названии без применения префиксов гидро-(как, например, в названиях индан и циклогексан), название гетероцрпшического соединения образуется по правилу В-4,1 (а). В других случаях место гетероатомов в скелете соответствующего гомоциклического соединения обозначают по а-системе и полагают, что получающееся гетероциклическое соединение содержит максимально возможное число сопряженных и изолированных двойных связей к а-названию, составленному таким образом, добавляют, если это необходимо, обозначение водорода либо префиксами гидро-, либо символом Н. [c.406]


Смотреть страницы где упоминается термин Сопряжение гетероциклических соединениях: [c.373]    [c.42]    [c.43]    [c.137]    [c.373]    [c.95]    [c.71]    [c.156]    [c.373]   
Органическая химия (1998) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Гетероциклические соединени

Гетероциклические соединения

Гетероциклические соединения Гетероциклический ряд

Соединения сопряжение

Сопряжение



© 2024 chem21.info Реклама на сайте