Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация в масс-спектрометрии резонансная

    Впервые необходимость учета распределения электронов по энергиям возникла при определении потенциалов появления (ПП) положительных ионов при столкновениях электронов с атомами и молекулами (конец 20-х — начало 30-х годов). С тех пор причины разброса по энергии электронов в ионном источнике, воздействие различных факторов на энергию электронов в условиях масс-спектрометрического эксперимента разбирались неоднократно в многочисленных оригинальных статьях и монографиях [52, 61—66]. Поскольку в процессе изучения образования отрицательных ионов резонансным захватом электронов распределение электронов по энергиям является одной из важнейших характеристик экспериментальных устройств, кратко рассмотрим факторы, влияющие на энергию электронов в камере ионизации масс-спектрометра. Во избежание недоразумений отметим, что напряжение, ускоряющее электроны, складывается из подаваемого [c.19]


    После ионизации вещества ионы разделяются в масс-анализаторе в соответствии с их отношением массы к заряду. В настоящее время используют пять типов анализаторов магнитный секторный анализатор, квадрупольный фильтр масс (квадрупольный масс-спектрометр), квадрупольная ионная ловушка, времяпролетный анализатор и циклотронно-резонансный анализатор (масс-спектрометр на основе ион-циклотронного резонанса, ИЦР-спектрометр). Детектирование ионов в большинстве случаев проводят при помощи электронного умножителя, хотя применяют также и другие детекторы. В процессе анализа формируется огромное количество данных, поэтому для их сбора, хранения, обработки и интерпретации используют наиболее современные мощные компьютерные системы и программное обеспечение. [c.259]

    Многоквантовая ионизация (МКИ) легко достигается с использованием лазерного УФ-излучения. Процесс называется резонансно-усиленной многоквантовой ионизацией, если в него вовлечены резонансные промежуточные состояния. Для однофотонной фотоионизации больщинства частиц требуется использование длин волн излучения короче, чем пропускаемые материалами оптических волн, как указывалось в конце разд. 3.2. Использование двух- и многоквантового возбуждения позволяет осуществлять ионизацию для резко возрастающего набора частиц. Поскольку надежно детектируются очень низкие концентрации образовавшихся ионов, МКИ играет важную роль в спектроскопических исследованиях. Кроме того, велико значение МКИ и в масс-спектрометрии. Экспериментальные методики, объединяющие фотоионизацию и масс-спект-рометрию с селективным возбуждением, давно ценились за специфичность, с которой отдельные частицы или конкретные квантовые состояния могут быть ионизованы. Использование лазерной МКИ, обеспечивающей более высокую эффективность ионизации и относительную простоту оборудования, существенно расширяет область применения этого метода. [c.76]

    Масс-спектрометрия отрицательных ионов диссоациативного захвата электронов молекулами требует единственной стандартизации эксперимента — создания в ионном источнике условий, исключающих появление отрицательных ионов за счет других процессов (поверхностная ионизация, перезарядка и т. д.), кроме резонансных процессов образования ионов. Такая стандартизация (ничего общего не имеющая со стандартизацией экспериментальных устройств), не ограничивает возможность совершенствования аппаратуры, и, главное, любой масс-спектр отрицательных ионов в принципе не зависит от преходящих факторов технического оснащения эксперимента, так как отражает только физические свойства молекулы, проявляющиеся в ее взаимодействии с электроном. Практически, конечно, дискриминация но массам в ионном источнике и ряд других мешающих факторов искажают экспериментально получаемые относительные вероятности элементарных нроцессов, но эти искажения (неизбежные при любом эксперименте) являются преходящими и будут уменьшаться с прогрессом техники эксперимента. [c.136]


    Методы фотоионизации довольно слабо использовались для идентификации промежуточных продуктов, однако с появлением лазеров в ионизационных измерениях их диапазон существенно расширился. Основная идея заключается в том, что пучком фотонов с одинаковой энергией можно ионизовать промежуточный продукт реакции (например, СНз), не вызывая ионизации и фрагментации вещества-предшественника (например, СН4), или ионизовать молекулы вещества в высоком возбужденном состоянии, не затрагивая молекулы в более низких состояниях. При этом достигается высокая чувствительность, так как ионы образуются лишь тогда, когда есть промежуточный продукт, для идентификации ионов по массе можно использовать масс-спектрометры. Многоквантовая ионизация и резонансно-усиленная многоквантовая ионизация (см. разд. 3.9) обеспечивают ионизацию различных веществ без использования источников вакуумного УФ-излучения. Под действием лазерного излучения высокой интенсивности можно получить очень высокие квантовые выходы ионизации. [c.198]

    Резонансно-ионизационная масс-спектрометрия - высокоселективный и чувствительный аналитический метод, основанный на применении лазера для ступенчатой ионизации с помощью оптических переходов. [c.139]

    Различные типы масс-спектрометрии отличаются друг от друга не способом ионизации исследуемого вещества (здесь применяется, как правило, в техническом отношении самый простой метод электронного удара), а устройством анализатора. Было предположено несколько систем, в которых ионные пучки подвергаются действию импульсных или радиочастотных электрических полей [104]. Большую популярность приобрел циклотронно-резонансный масс-спектрометр. В этом приборе ионы попадают в ловушку, в которой движутся в однородном магнитном поле по циклоидам с определенной частотой. При совпадении этой частоты с частотой переменного электрического поля (приложенного перпендикулярно к магнитному полю) ионы поглощают электромагнитную энергию, что и регистрируется прибором. Поскольку поглощение носит резонансный характер, масс-спектрометр получил приведенное выше название, а сам метод, связанный с его применением, — циклотронно-резонансной [c.257]

    При исследовании электронной структуры кластеров малых слабосвязанных молекул применяются специфические варианты оптической спектроскопии, связанные с регистрацией ионизованных сепарированных по размеру кластеров в масс-спектрометре. Для этого применяется способ резонансной двойной ионизации. Первый этап в этом процессе состоит в резонансном поглощении фотона, второй этап представляет собой нерезонансное поглощение, приводящее к ионизации кластера. Схема подобного процесса представлена на рис. 9.9. [c.316]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]


    Иетастабильные ионы. В процессе ионизации образуются неустойчивые (метастабильные) ионы. Если время распада иона составляет с, то это близко к времени нахождения иона в камере масс-спектрометра на пути от ионного источника до анализатора. В этом эксперименте будут регистрироваться ионы распада. Однако пики этих ионов в масс-спектре имеют диффузный характер. Пояснения даются ниже при описании схемы эксперимента. Отрицательные ионы. Они образу ются в резу льтате резонансного захвата электрона  [c.23]

    При данной энергии захватываемых электронов все молекулярные ионы образуются с одной энергией возбуждения, равной сумме энергии захватываемого электрона и энергии электронного сродства молекулы. Для резонансов в области энергии электронов 5—8 эв энергия возбуждения молекулярного иона значительно превышает среднюю энергию возбуждения положительных ионов в стандартных условиях ионизации, принятых в масс-спектрометрии. Особенность резонансных процессов образования осколочных ионов заключается в том, что избыточная энергия может быть рассеяна только в процессе диссоциации — на поступательную энергию продуктов диссоциации и их внутреннее (колебательное) возбуждение. Большая избыточная энергия реакции означает большее колебательное возбуждение ионов, которое способно привести как к их дальнейшей диссоциации, так и к автоотщеплению электрона. Ионы структуры а энергетически менее выгодны, но избыточная энергия реакции (I) меньше избыточной энергии реакции (П). [c.55]


Смотреть страницы где упоминается термин Ионизация в масс-спектрометрии резонансная: [c.21]    [c.23]    [c.777]    [c.667]    [c.17]    [c.108]    [c.23]    [c.667]    [c.527]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.138 , c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Ионизация в масс-спектрометрии

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Резонансные



© 2025 chem21.info Реклама на сайте