Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фермент время синтеза и распада

    Изучение клеточной организации и попытки установить связь между структурой и функцией на различных иерархических уровнях — от простых молекул до макромолекул и таких агрегатов, как мембраны или частицы, до субклеточных единиц и, наконец, клеток — все это составляет одну из самых увлекательных и перспективных областей исследования в современной биологии. Для биохимика и цитолога выяснение химического значения различных сложных структурных элементов, обнаруженных в клетке, важно не только само по себе оно является необходимой ступенью любого исследования, направленного на то, чтобы понять, как происходит синтез, распад и взаимодействие этих элементов. Мы начинаем догадываться, что именно в этих сложных структурах скрыт секрет механизмов, с помощью которых осуществляется регуляция клеточных процессов как в пространстве, так и во времени. Этот секрет, возможно, заключается, по крайней мере отчасти, в том, что различные клеточные компоненты — главным образом ферменты, а также их субстраты и модификаторы (активаторы и ингибиторы) — находятся в разных отсеках клетки и потому не всегда доступны друг для друга. Из сказанного вытекает два вывода, подтвержденных в последнее время многочисленными экспериментальными данными 1) в клетке существует четкое распределение некоторых ключевых компонентов, особенно ферментов они локализуются в (или на) определенных клеточных структурах, представляющих собой микроскопические внутриклеточные органы, так называемых органеллах 2) эти структуры, а вместе с ними и соответствующие клеточные компоненты можно выделить с помощью подходящих мягких методов разрушения клеток (гомогенизация) и последующего фракционирования. [c.239]


    Микроэлементы и ферменты. В настоящее время выяснено, что микроэлементы входят в состав большого числа ферментов. Роль ферментов в жизни растений велика они значительно ускоряют биохимические реакции, делая их возможными при обычной нормальной температуре организма. Все биохимические реакции синтеза, распада и обмена органических веществ протекают при участии ферментов. В ферментативных реакциях принимают участие микроэлементы, показанные в табл. 1. [c.7]

    При распаде лактозы действуют одновременно две системы во-первых, система разложения лактозы и, во-вторых, конститутивный путь распада глюкозы в последний и отводятся продукты распада лактозы. Нельзя ожидать, что обе системы будут заранее в точности согласованы друг с другом. Если распад лактозы будет 1дти с небольшой скоростью, то ничего страшного не произойдет небольшие количества продуктов распада лактозы глюкозный путь в состоянии переработать немедленно. Иное дело, если будет разложено больше лактозы, чем глюкозный путь в состоянии осилить. Вот тут-то и включается тонкая настройка галактоза — промежуточный продукт, образующийся на первом этапе разложения лактозы,— накапливается все в большем количестве и начинает действовать как корепрессор. Она оттесняет индуктор (лактозу) от апорепрессора и связывается с ним, образуя активный репрессор. В результате выключается ген-оператор, блокируется синтез ферментов и на некоторое время прекращается распад лактозы — до тех пор, пока не снизится в достаточной степени концентрация галактозы. Лишь после этого настройку можно считать завершенной (рис. 133). [c.284]

    Обмен веществ включает как синтез, так и распад многих химических соединений в клетках. У животных расщепление компонентов пищи до более простых веществ обеспечивает организм не только энергией, но и химическими соединениями, которые используются затем при синтезе молекул, необходимых для роста. Подобным же образом каждая отдельная клетка любого живого организма синтезирует или поглощает из окружающей среды низкомолекулярные вещества и из них, как из кирпичиков, строит крупные молекулы. В то же время в клетках имеются ферменты, расщепляющие любые синтезированные организмом соединения. В итоге устанавливается стационарное состояние, при котором сложные соединения непрерывно синтезируются в ходе одних процессов и распадаются в ходе других. На этом основана замечательная система самообновления наших тканей. [c.11]


    М. В. Ненцкий представлял синтез мочевины непосредственно из аммиака и угольной кислоты. Однако его теория была вскоре оставлена, так как многочисленные попытки доказать образование мочевины этим путем не увенчались успехом. В то же время было известно, что при автолизе печеночной ткани в ней накапливается мочевина. Поиски фермента, катализирующего этот процесс, привели к выделению аргиназы из ткани печени. При действии аргиназы на аргинин он распадается на орнитин и мочевину. Эти наблюдения позволили считать, что аргиназа участвует в образовании по крайней мере некоторой доли мочевины из аргинина. [c.197]

    Ферменты могут ускорять реакции в обоих направлениях, т. е. в ряде случаев один и тот же фермент может катализировать и процесс распада, и процесс синтеза. В настоящее время синтетическое действие ферментов доказано в лабораторных условиях для ряда энзиматических процессов. [c.81]

    Но они обладают поразительной способностью синтезировать новые ферменты, что позволяет им не просто приспосабливаться к новым условиям, но и извлекать из этого максимальную пользу. Поскольку они являются одноклеточными организмами, они не нуждаются в гормонах и их обмен веществ связан с делением клеток. Когда бактерии не делятся, у них осуществляется как синтез, так и распад белка, однако во время экспоненциального роста имеет место только синтез, но не распад белка. У взрослых многоклеточных организмов ситуация совсем иная. Во многих органах митоз происходит редко, и синтезированный сверх необходимого белок должен быть удален из организма, так что обмен белка в этом случае является обычным и необходимым явлением. Когда бактерии в новых внешних условиях начинают синтезировать новые ферменты, то количество ненужных старых ферментов быстро уменьшается в результате деления клеток. Можно показать, что количество определенных ферментов в различных органах млекопитающего будет меняться в зависимости от состава пищи, но куда более сложно выяснить, происходит ли это в результате увеличения скорости синтеза, или уменьшения скорости распада ферментов, или за счет действия этих обоих ферментов. В случае же бактерий увеличение скорости синтеза фермента в результате индукции или дерепрессии может быть просто и наглядно объяснено с помощью модели оперона. [c.75]

    Относительно ограниченное число групп основных молекул и наличие общих путей синтеза и распада их во всех живых организмах говорят об общности происхождения всей существующей в настоящее время жизни на земле. То, что синтетические процессы более отчетливо выражены в растениях, а процессы распада — в животных организмах, еще больше подчеркивает эту общность. В конечном счете животный мир существует за счет растений. С биохимической точки зрения жизнь представляет собой великое единство, оно создается и поддерживается действием связанных между собой цепей биохимических реакций, катализаторами которых являются специфические белки-ферменты, осуществляющие эти реакции в водной среде. [c.57]

    Жизнь представляет собой тонкое динамическое равновесие между рядом синтезов и распадов, осуществляемых в открытой системе. Особенностью живых организмов является ускорение химических реакций при помощи таких катализаторов, которые создаются самими организмами. Эти катализаторы получили название ферментов (энзимов) и представляют собой белковые молекулы. Некоторые из ферментов — весьма стабильные и растворимые соединения и сравнительно легко поддаются выделению и очистке. В принципе выделение и очистка ферментов совершаются при помощи методов, которые используются в белковой химии, но ферменты выгодно отличаются от других белков тем, что они обнаруживают свое присутствие способностью катализировать определенные реакции. Это свойство дает возможность обнаружить фермент даже при его ничтожном содержании в материале. В настоящее время получено в кристаллическом виде или в состоянии высокой очистки свыше 140 ферментов. [c.202]

    Во время образования плодовых тел практически все старые белки разрушаются и замещаются новыми, синтезируемыми на определенных стадиях развития. Некоторые из этих белков представляют собой ферменты, отсутствующие в вегетативных клетках или присутствующие там в очень небольших количествах. Это накопление новых белков сопровождается синтезом новых РНК. Практически вся РНК (включая рибосомы) распадается и замещается новой. [c.133]

    Во время продолжительной физической активности синтез АТР происходит в основном за счет аэробного распада глюкозы. Интенсивность работы мышцы ограничивается активностью митохондриальных ферментов, обеспечивающих полное окисление глюкозы (активность этих ферментов достигает предела, например, во время бега хорошо тренированного стайера со скоростью 6 м/с). [c.377]


    В отличие от многочисл. короткоживущих комплексов нуклеиновых к-т с белками, образующихся при биосинтезе и распаде нуклеиновых к-т (комплексы нуклеиновых к-т с ферментами их синтеза и гидролиза, с регуляторными белками и т.п.), Н. существуют в клетке длит, время. [c.304]

    Лигазы (синтетазы) представляют собой отдельную группу ферментов, катализирующих образование химических связей между С и N, С и О, С и S, а также С и С. Связь С—С может образоваться в результате альдольной конденсации и не нуждается в этом случае в большом количестве энергии. Связь С—О образуется в реакции, катализируемой трансферазами, как, например, во время синтеза полигликозидной цепи в присутствии фосфорилазы. Особенностью синтетаз является необходимость нуклеотидных коэнзимов в форме высокоэнергетических трифосфатов, которые распадаются на нуклеотид и пирофосфат. Энергия, освобождаемая в этом распаде, исполь- [c.211]

    На сегодняшний день известно, что во всех организмах имеются многочисленные ферменты, способные с огромной скоростью катализировать синтез, распад и взаимные превращения углеводов и других веществ. Обращает на себя внимание тот факт, что наиболее реакционноспособными формами моносахаридов являются их фосфорные эфиры. В настоящее время обнаружено еще одно интересное соединение, которое, вступая в комплексную связь с гексозами, активирует их. Это представители некоторых пиримидиновых нуклеотидов, в частности уридиндифосфат. Ури-диндифосфат соединяется с глюкозой, образует уридиндифосфо-глюкозу (УДФ-глюкоза) и в таком виде легко вступает в присутствии соответствующих ферментов во взаимодействие с рядом веществ для осуществления взаимопревращений или синтеза новых веществ  [c.382]

    Наличие гликогена намного увеличивает количество глюкозы, легко доступной для использования организмом во время интервалов между приемами пищи или в период мышечной активности. Содержание энергии в глюкозе жидкостей тела человека со средним весом 70 кг составляет всего 40 ккал, тогда как для общего гликогена тела эта величина превышает 600 ккал, даже после ночного голодания. В организме гликоген накапливается главным образом в печени и скелетных мыцщах. Концентрация гликогена в печени выше, чем в мышцах, но в целом запасы гликогена в скелетных мышцах, ввиду их значительно большей массы, превышают его запасы в печени. Гликоген присутствует в цитозоле в форме гранул диаметром, колеблю щимся в диапазоне от 100 до 400 Л Такое различие в размерах гранул объясняется неодинаковым размером молекул гликогена максимум распределения, как правило, приходится на массу в несколько тысяч килодальтон. На электронных микрофотографиях гликогеновые гранулы выглядят плотными (рис. 16.3). Они содержат ферменты, катализирующие синтез и распад гликогена, а также некоторые ферменты, регулирующие эти процессы. Гликогеновые гранулы отличаются, однако, от муль- [c.115]

    В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток , образовавшийся глю-кагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу. Фосфорилирование первого фермента способствует формированию активной гликоген-фосфорилазы и соответственно распаду гликогена с образованием глюкозо-- 1-фосфата (см. главу 10), в то время как фосфорилирование гликогенсинтазы сопровождается переходом ее в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови. [c.272]

    Гипергликемический эффект глюкагона обусловлен, однако, не только распадом гликогена. Имеются бесспорные доказательства существования глюконеогенетического механизма гипергликемии, вызванной глюкагоном. Установлено, что глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Глюкагон стимулирует образование глюкозы из аминокислот путем индукции синтеза ферментов глюконеогенеза при участии цАМФ, в частности фосфоенолпируваткарбок-сикиназы —ключевого фермента этого процесса. Глюкагон в отличие от адреналина тормозит гликолитический распад глюкозы до молочной кислоты, способствуя тем самым гипергликемии. Он активирует опосредованно через цАМФ липазу тканей, оказывая мощный липолитический эффект. Существуют и различия в физиологическом действии в отличие от адреналина глюкагон не повышает кровяного давления и не увеличивает частоту сердечных сокращений. Следует отметить, что, помимо панкреатического глюкагона, в последнее время доказано существование кишечного глюкагона, синтезирующегося по всему пищеварительному тракту и поступающего в кровь. Первичная структура кишечного глюкагона пока точно не расшифрована, однако в его молекуле открыты идентичные М-концевому и среднему участкам панкреатического глюкагона аминокислотные последовательности, но разная С-концевая последовательность аминокислот. [c.272]

    Известно, что молекулы белков расщепляются в тканях полностью. Поэтому для молекулы белков можно определить время обновления. Фосфолипиды также активно распадаются в тканях, но для каждой части молекулы время обновления различно. Например, время обновления фосфатной группы отличается от времени обновления 1-ацильной группы, и обусловлено это наличием ферментов, вызывающих частичный гидролиз фосфолипидов, вслед за которым снова может происходить их синтез (рис. 11.7). [c.397]

    В наших лабораториях мало применялся ферментативный гидролиз протеинов. Причина этого лежит в неуменьи разделять ферменты, идентифицировать, очищать от примесей. Действие смеси ферментов, добываемых нами из желудочного сока животных, из секретов желез, из клеток организмов, не позволяет вести процесс распада строго по стадиям от протеина до аминокислоты аналогично ходу его в организмах, отклоняет реакцию в сторону получения вторичных образований и даже не исключает одновременно и синтеза (Данилевский). Только в самое последнее время Вильштетером, а за ним другими исследователями открыты способы очистки и изолирования ферментов один от другого. Эти успехи в области исследования ферментов, даже при нынешнем начальном, далеком от совершенства состоянии, дали в руки исследователей новое средство к изучению белковых веществ. Реакции с протеинами приближены к естественным, имеющим место в организмах условиям, а это во многом поможет разобраться в трудно разрешаемой белковой проблеме. [c.18]

    Основным моментом, определяющим начало тормозящего действия фенольных ингибиторов на рост растений, можно считать их накопление в растительной клетке. Остановимся на этом вопросе подробнее. Аккумуляция ингибиторов в осенних почках древесных растений, как показали наши эксперименты (Кефели, Турецкая, 1965 Кефели, Коф, Книпл, Буханова, Ярвисте, 1969), связана с резким замедлением процессов их распада. Осенние почки ивы разрушают фенольный ингибитор изосалипурпозид в несколько раз слабее, нежели весенние. Можно, с одной стороны, предположить, что накопившийся в больших количествах ингибитор подавляет через механизм образования АТФ синтез ферментов, окисляющих сам ингибитор, т. е. происходит как бы неспецифическое торможение ферментативного разрушения ингибитора с помощью самого же ингибитора. С другой стороны, фенольный ингибитор, действуя по принципу отрицательной обратной связи, может затормозить свой собственный синтез, в результате чего устанавливается то равновесное состояние, которое характерно для торможения роста в осенний период. Фенольный ингибитор для осуществления торможения через синтез АТФ должен предварительно аккумулироваться в клетке в макроколичествах, в то время как абсцизовая кислота действует в малых дозах на уровне синтеза РНК и таким путем репрессирует активность всей ростовой системы. [c.210]

    Распад гликогена в печени происходит под влиянием фермента фосфорилазы, которую активирует адреналин. При этом образуется сложный эфир — глюкозофосфат последний при участии фермента фосфатазы расщепляется на глюкозу и фосфорную кислоту. Освободившаяся кислота может быть использована на синтез глюкозофос-фата, а глюкоза поступает в кровь. Таким образом, убыль сахара в крови все время пополняется за счет гликогена печени. [c.186]

    В настоящее время схему синтеза жирных кислот можно изобразить следующим образом. Исходным соединением для синтеза является ацетилкофермент А, который представляет собой главный продукт анаэробного распада углеводов. Если в качестве исходного соединения используется свободная уксусная кислота (что случается значительно реже), то на первом этапе образуется ацетилкофермент А. Для этого требуется энергия АТФ и реакция катализируется ферментом а ц ет и л-К о А-с интетазой  [c.314]

    После человека Е. all является в настоящее время наиболее интенсивно изучаемым организмом . Бактерии можно подвергать действию радиации или мутагенных агентов, повреждающих их генетический аппарат, таким образом, чтобы вызвать специфическое изменение биосинтетических процессов, контролируемых соответствующими генами. В таком случае становится возможным идентифицировать промежуточные продукты реакций, накапливающиеся в культуре мутанта. Бактерии можно заморозить и затем разрушить, чтобы извлечь из них ферменты. Применение таких чрезвычайно жестких воздействий к другим организмам часто оказывается невозможным. Наконец, особенности процессов синтеза и распада у бактерий таковы, что позволяют им быстро расти на простых средах из минеральных солей с очень широким набором органических соединений в качестве источника углерода. В таких случаях иногда легче следить за химическими превращениями простого соединения, которым питаются микробы, чем за сложными веществами, которыми питаются высшие организмы. [c.29]

    И 25°), она происходит только при распаде гликогена и не связана с гликогенезом, т. е. с процессом ресинтеза гликогена. Гликогенез происходит и тогда, когда отношение [Фн]/[Глюкозо-1-фосфат] достигает 300, а также при некоторых наследственных нарушениях обмена, нри которых фосфорилаза вообще отсутствует. Кроме того, в присутствии адреналина, который, как только что упоминалось, стимулирует активность фосфорилазы, происходит распад, а не синтез гликогена. В настоящее время благодаря работам Лелуара и других исследователей окончательно доказано, что синтез гликогена идет по пути полимеризации не самого глюкозо-1-фосфата, а смешанного ангидрида этого соединения и УМФ, так называемой УДФ-глюкозы, или УДФГ (См. гл. VIII). В этой реакции участвует специфичный фермент — гликогенсинтетаза. [c.285]

    Действительное количество фермента, присутствующего в любой данный момент времени, определяется относительными скоростями его синтеза и распада, а также концентрациями различного рода ингибиторов и активаторов. Как правило, распад ферментов протекает медленно и не известно ни одного специального примера, когда содержание фермента регулировалось бы его распадом. В то же время показано, что существует высокоспецифичная регуляция синтеза ферментов, осуществляемая за счет гормональных механизмов, механизма репрессии и дерепрессии (индукции), а также других пока еще недостаточно изученных процессов. Такая регуляция синтеза ферментов мол ет быть абсолютно по спе ,ифичности, но осуществляется она медленно. У бактерий для значительных изменений содержан 1я фермента таким путем необходимы минуты, а у высших растений— часы. [c.16]

    Хьюм и др. [38] показали также, что окислительная активность митохондрий, выделенных из яблок (особенно из ткапи кожицы), повышалась на протяжении климактерического периода, причем это повышение начиналось за несколько дней до того, как усиливалось выделение СО2 в целом плоде. (Митохондриальную активность измеряли по поглощению кислорода и выделению углекислоты при добавлении сукцината и малата.) Это наблюдение наряду с тем фактом, что во время климактерического периода несколько возрастало содержание белка, привело Хьюма и его сотрудников к предположению, что в этот период происходит синтез ферментов (пируватдекарбоксилазы и малик-фермента), причем энергия, необходимая для этого синтеза, поступает за счет повышенной митохондриальной активности. Исследователи предположили, далее, что причиной конечного падения интенсивности дыхания до величины, которая остается затем почти постоянной (пока не наступит полный распад ткани), является недостаток кислотного субстрата, необходимого как для цикла Кребса, так и для малик-фермента. Нил и Хьюм [64] показали, что дыхательный коэффициент у дисков из сильно перезревших [c.488]

    Дальнейшие экспериментальные исследования должны показать, можно ли объяснить подобными причинами также и климактерий в тканях других плодов. Обычно яблочная кислота присутствует в плодах в незначительном количестве [80]. С другой стороны, Биале [5] нашел, что дыхательный коэффициент плодов авокадо во время созревания пе изменяется. Некоторые плоды исследовались на присутствие пируваткарбоксилазы во всех этих случаях было обнаружено, что карбоксилазная активность во время созревания плодов повышалась. Хьюм [36] высказал предположение, что в плодах, в которых преобладает лимонная кислота (например, у некоторых сортов груш), ту роль, которую играет в яблоках малик-фермент, может выполнять изоцитратдегидрогеназа. Однако всегда следует помнить, что изменения путей обмена и активности отдельных ферментов, а также изменения реакций, лимитирующих скорость обменных процессов, могут зависеть от многих причин, например от синтеза или распада самих ферментов, от наличия акцепторов фосфата, субстратов и кофакторов, от присутствия ингибиторов, от pH, температуры и т. д. [c.489]

    Конечно, совсем по-иному должно обстоять дело с конститутивными ферментами, разлагающими глюкозу. Эта ферментная система работает очень интенсивно, и концентрация ферментов должна здесь постоянно поддерживаться на очень высоком уровне. Тем не менее она не бывает слишком высокой. Возможности регуляции здесь следующие. Во-первых, индуктор и корепрессор могут быть родственны друг другу, т. е. либо индуктор возникает из корепрессора (или наоборот), либо индуктор и корепрессор образуются одновременно, на одной предшествующей стадии. Во-вторых, между индуктором и корепрессором может устанавливаться постоянное количественное соотношение (нечто подобное известно в органической химии), которое как раз таково, чтобы отдача информации опероном все время держалась на постоянном (высоком) уровне. Однако все это, собственно говоря, домыслы, лишенные экспериментального подтверждения. Возможно, в действительности все выглядит совершенно иначе. Но одно кажется совершенно ясным наше разделение ферментов на регулируемые и нерегулируемые (конститутивные) не вполне правильно. Лучше было бы говорить о ферментах, концентрация которых стабильно поддерживается на каком-то постоянном, весьма низком (нанример, ферменты биосинтеза коферментов) или высоком уровне (например, ферменты разложения глюкозы), и о ферментах, концентрация которых может сильно варьировать, т. е. быть очень высокой или нулевой в зависимости от требований (синтез аминокислот — регуляция посредством репрессии распад лактозы — регуляция посредством индукции). Поскольку нам важно, чтобы читатель хорошо усвоил принцип регуляции, попробуем кратко резюмировать все то, что мы рассказали. Итак, регуляция осуществляется посредством репрессоров, имеющих двойную (аллостерия) специфичность во-нервых, в отношении генов-операторов, находящихся в геноме, и, во-вторых, в отношении определенных малых молекул (корепрес-соров или индукторов), находящихся в цитоплазме. К. Брэш в своей книге Классическая и молекулярная генетика так хорошо описал все эти механизмы, что лучше всего привести здесь его собственные слова  [c.287]

    С другой стороны, существуют довольно прямые генетические опыты, показывающие, что синтез каждого отдельного белка требует все время присутствия соответствующей области хромосомы. В опыте Парди и Стента брались клетки Е. oli F La ., т. e. неспособные производить фермент Р-галактозидазу (расщепляющий лактозу). В результате конъюгации цистрон La " был введен в эти клетки, носле чего они немедленно синтезировали галактозидазу. Однако, если введенная хромосома из отцовских клеток Hfr содержала радиоактивный фосфор, то после распада Р (путем выдерживания замороженной культуры в течение достаточно длительного времени) соответствующая генетическая [c.440]

    Клетки Е. oli выращивались на среде, содержащ изотоп серы или углерода С . В некоторый момент клетки переносились на обычную питательную среду без изотопной метки и одповременно с помощью индуктора запускался синтез фермента Р-галактозидазы. Фермент выделялся в чистом виде из суммарного клеточного белка, затем измерялся его изотопной состав. Оказалось, что Р-галактозидаза содержит только нерадиоактивную серу или углерод, т. е. целиком синтезирована из веществ с изотопным составом той среды, на которой клетки жили в данный момент. В то же время все прочие белки клеток построены из аминокислот, меченных радиоактивными изотопами. Если бы распад и ресинтез белков действительно имел место, Р-галакто-зидаза должна была бы синтезироваться с исиользованием радиоактивных иредшественников — пептидов или аминокислот. Ничего подобного не наблюдалось. Синтезированные белки в живых клетках абсолютно не расщеплялись и оставались неизменными, пе вступая в обмен со средой. [c.447]

    Цинк входит в состав многих ферментов энергетического обмена, а также ферментов карбоангидразы, которая катализирует обмен Hg Og, и лактатдегидрогеназы, регулирующей окислительный распад молочной кислоты. Он участвует в создании активной структуры белка инсулина — гормона поджелудочной железы, усиливает действие гормонов гипофиза (гонадотропного) и половых желез (тестостерона) на процессы синтеза белка. В последнее время доказано положительное влияние цинка на иммунную систему, его антиоксидантное действие. Недостаточность цинка может привести к ослаблению иммунитета, потере аппетита, замедлению процессов роста. [c.71]

    Таким образом, но-видимому, нельзя полностью отрицать существования обратимости действия эстераз. Возможно, что отрицательные результаты, полученные в ряде случаев, объясняются тем, что условия проведения реакций не были оптимальны для протекания реакции этерификации. Пе исключено также, что прямую и обратную реакцию катализируют разные ферменты. В настоящее время хорошо известно, что процессы синтеза и распада часто катализируются не одними и теми же ферментами нротеазы, например, не участвуют в белковом синтезе, а нуклеазы — в синтезе нуклеиновых кислот. То же самое справедливо относительно биосинтеза и распада аминокислот, коферментов, липидов. Не исключено, что и биосинтез эфиров карбоновых кислот катализируется не теми ферментами, которые ответственны за их расщепление. [c.34]

    Однако продукты распада клеточной стенки, стимулируемые вторгающимся патогеном, могут оказаться полезными в качестве самых первых сигналов об опасности, грозящей клеткам растения-хозяина. Клетки, контактирующие с патогеном, обычно синтезируют низкомолекулярные продукты, которые называются фитоалексинами и представляют собой антибиотики, токсичные для определенных патогенных бактерий и грибов. В настоящее время идентифицированы некоторые соединения, ответственные за стимуляцию биосинтеза фитоалексинов растением. Эти вещества, называемые элиситорами, представляют собой короткоцепочечные олигосахариды, образующиеся из полисахаридов клеточной стенки и проявляющие активность при очень низких концентрациях (10 - 10 ° М). Одним из первых хорошо охарактеризованных элиситоров является гепта-Р-глюкозид, выделяющийся из клеточной стенки гриба, поражающего сою (рис. 20-34). Олигосахаридные элиситоры синтеза фитоалексинов могут также продупироваться клеточной стенкой растений. В этом случае они представляют собой фрагменты пектинового скелета, построенного из остатков галактуроновой кислоты, которые высвобождаются из клеточной стенки растения при действии ферментов, секретируемых либо внедряющимся патогеном, либо в некоторых случаях ферментами растительной клетки, активированными при повреждении. [c.410]

    Многие сложные молекулы, например молекулы белков, расщепляются в тканях полностью. Поэтому для них можно определить время обновления. Фосфолипиды также активно распадаются, но в этом случае для каждой части молекулы время обновления различно. Например, время обновления фосфатной группы отличается от времени обновления 1-ацильной группы это обусловлено наличием ферментов, вызывающих частичный гидролиз фосфолипидов, вслед за которым может снова происходить их синтез (рис. 25.4). Фосфолипаза А, катализирует гидролиз эфирной связи в положении 2 глицерофосфолипидов, в результате чего образуются свободная жирная кислота и лизофосфолипид, который в свою очередь реацилируется ацил-СоА при участии ацилтрансферазы. В альтернативном варианте лизофосфолипид (например, лизолецитин) атакуется [c.251]


Смотреть страницы где упоминается термин Фермент время синтеза и распада: [c.157]    [c.168]    [c.249]    [c.550]    [c.281]    [c.15]    [c.31]    [c.34]    [c.52]    [c.56]    [c.276]    [c.282]    [c.191]    [c.372]    [c.76]    [c.76]    [c.65]   
Биологическая химия Изд.3 (1998) -- [ c.156 ]




ПОИСК







© 2024 chem21.info Реклама на сайте