Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиморфизм антигенов

    Хотя подход с использованием синтетических пептидов обладает значительными потенциальными возможностями, остается неразрешенным ряд реальных или теоретических препятствий. Слабая антигенная активность большинства синтетических пептидов вынуждает для усиления иммунного ответа использовать в экспериментальных исследованиях на животных адъювант Фрейнда. В связи с тем что на людях адъювант Фрейнда использовать нельзя, для клинического применения синтетических пептидов необходимо обнаружение или разработка эффективных адъювантов, пригодных для человека. Не исключено, что одного пептида будет недостаточно для индукции резистентности, так как большие поверхностные антигены обычно содержат несколько различных иммунологических доменов, вызывающих защитный гуморальный и (или) клеточный ответ [15, 197]. Иногда идентификация небольших защищающих пептидов может оказаться невозможной, как, например, пептидов гемагглютинина вируса гриппа А, которые стимулировали бы образование антител, эффективно нейтрализующих инфекционность вируса [58, 70, 119]. Можно также предсказать трудности в стимуляции иммунного ответа к эпитопам, которые сформированы в результате сближения разных участков линейной белковой молекулы. Наконец, ожидаемому анти-тельному ответу у значительной части населения может препятствовать полиморфизм антигенов гистосовместимости класса II, контролирующих ответ на синтетические антигены [168]. Однако, поскольку уже достигнута защита на одной экспериментальной модели, можно надеяться на получение иммуногенных препаратов, активных в отношении других вирусов. [c.154]


    Другая возможная функция-это защита от вирусной или бактериальной инфекции. Антигенный материал человеческого происхождения может быть включен во внешнюю мембрану вируса, в результате чего этот вирус труднее распознается организмом другого человеческого индивида. Однако, если вирус содержит МНС-материал от генетического отличного индивида, он может быть намного легче инактивирован иммунной системой. Такой механизм объясняет, почему высокий полиморфизм МНС-системы имеет селективное преимущество. Другая возможная функция МНС-района-защита от заражения опухолевыми клетками других особей того же вида. С таким объяснением хорошо согласуются наши представления о важной роли МНС-сис-темы при трансплантации, а также высокая степень ее полиморфизма. Дальнейшее выяснение свойств и функций главного комплекса гистосовместимости поможет нам решить многие проблемы, например как организм управляет своим взаимодействием со средой и как недавние изменения в окружающей среде могут повлиять на генетическую конституцию в будущем. Полезно задать следующие вопросы существуют ли в природе другие примеры таких генных кластеров с родственными функциями Может ли их анализ изменить что-то в наших представлениях о кластере МНС На самом деле, один такой пример, уже очень тщательно проанализированный, существует-это мимикрия у бабочек. [c.222]

    Значение новых исследовательских стратегий. Полиморфизм а 1-антитрипсина интересен тем, что связанный с ним механизм разрушения легких можно объяснить. Этот случай явно контрастирует с ассоциациями, описанными для антигенов АВО и даже для [c.274]

    С другой стороны, изучение ассоциации болезней с системами генетического полиморфизма, например с антигенами HLA и [c.258]

    До 1955 г. были известны только случаи полиморфизма по нескольким поверхностным антигенам эритроцитов, т.е. группам [c.280]

    Какова доля полиморфных локусов у человека Сколько у человека полиморфных генов Составляют ли полиморфные локусы небольшую часть генома человека или их доля высока Группы крови могут быть идентифицированы только в том случае, если к определенным антигенам обнаружены антитела. Серологическое выявление генного локуса обычно заранее предполагает существование генетической изменчивости по данному локусу-наличия полиморфизма или редких вариантов. Выявление генетической изменчивости ферментов [c.281]

    Указанный механизм может поддерживать полиморфизм даже при селективной невыгодности гетерозигот. Более того, в некоторых случаях существует более одной точки устойчивого равновесия. Возможно, что у человека взаимная адаптация паразита к хозяину и наоборот происходит путем частотно-зависимого отбора. Паразит (например, бактерия или вирус) может адаптироваться к наиболее распространенному биохимическому или иммунологическому типу хозяина при этом более редкие типы будут иметь селективное преимущество [1779]. Паразит имитирует антигены хозяина, либо приобретая способность продуцировать его антигены, либо прямо, используя материал мембраны хозяина для синтеза собственной мембраны. Первый механизм (генетический) реализуют бактерии, содержащие АВН-подобный антиген [211] (разд. 6.2.1.8) второй механизм, возможно, встречается у некоторых вирусов. В обоих случаях иммунные защитные системы хозяина обмануты и паразит размножается успешнее, чем в том случае, если бы он не имел общих с хозяином антигенов. Отбор является частотно-зависимым, поскольку вирус в основном адаптируется к наиболее часто встречающемуся генотипу и более редкие генотипы имеют селективное преимущество. [c.307]


    Иммунизация крыс проводится в тех случаях, когда требуется получить антитела к антигенам мыши, для которых отсутствует полиморфизм у разных линий мышей. Полученные гибридом-ные клетки можно выращивать в организме крыс, если применять миеломные клетки крыс, или в организме мышей после подавления их иммунологической реактивности (см. ниже). [c.100]

    Антисыворотки к аллотипам иммуноглобулинов, к антигенам гистосовместимости или к любым другим антигенам внутривидового полиморфизма необходимо тестировать на клетках особей (инбредных линий), заведомо положительных и отрицательных по данному аллоантигену. [c.172]

    Рассмотрение различных вариантов иммуноэлектрофореза естественным образом завершает начатое еще в предыдущей книге изложение методов фракционирования белков и нуклеиновых кислот в электрическом поле. В любом из вариантов иммуноэлектрофореза обязательно имеет место явление иммунопреципитации. Это явление широко используется и само по себе — как плодотворный способ высокоизбирательной очистки белков, а также для обнаружения иммуноспецифических продуктов фракционирования, проведенного с помощью обычного электрофореза или ИЭФ. Поэтому представляется целесообразным предварить рассмотрение собственно иммуноэлектрофореза описанием механизма и особенностей метода иммунопреципитации. Однако многие из этих особенностей, в частности очень важные явления неоднозначности иммунного ответа и полиморфизма иммунных реакций, нельзя понять без хотя бы беглого, но не слишком поверхностного знакомства С механизмом выработки иммунитета, строением я функцией иммуноглобулинов, природой сил взаимодействия между антителами и антигенами и т. д. Эти же представления окажутся необходимыми в следующей части книги при рассмотрении радиоиммунных методов исследования. Между тем в большинстве случаев биохимики и молекулярные биологи довольно плохо знакомы с современной иммунохимией, претерпевающей к тому же пору бурного развития. [c.81]

    Уникальная особенность МНС — это чрезвычайный полиморфизм (структурная вариабельность) кодируемых его генами молекул. Однако не все продукты МНС полиморфны в одинаковой степени. Антигены Qa, Tia и М, близкие по структуре к молекулам класса I, гораздо менее полиморфны, чем классические антигены классов I и II. Перечень специфичностей антигенов HLA классов I и II, а также аллелей каждого локуса И LA приведен в приложении I. [c.126]

    Яркий пример генетической изменчивости - система групп крови ABO. Полиморфизм по этому признаку был выявлен в начале нашего века при изучении реакции агглютинации. Антигенные группы крови контролируются тремя аллельными генами л, 1в и 1°. Обозначим соответствующие аллельные частоты как р, я и г Гены и Р ко-доминантны по отношению друг к другу, но полностью доминируют над геном ]о. В результате такого взаимодей-ствия(см. Табл. 1) шесть возможных генотипов оказываются распределенными по четырем фенотипическим классам (группам крови) со следующими частотами. [c.181]

    К аллотипическим антигенным детерминантам (аллотипам) относятся те антигенные детерминанты молекул иммуноглобулинов, которые имеются у одних особей данного вида и отсутствуют > других, и эти различия определяются аллельными генами. Наличие аллотипов является отражением внутривидового полиморфизма в антигенном строении молекул иммуноглобулинов. [c.41]

    Культивируются в строгих анаэробных условиях (обычно в атмосфере из смеси СО2 и Н,). Неспорообразующие анаэробы отличаются полиморфизмом, обладают различной степенью ферментативной активности. Антигенные свойства у отдельных видов изучены недостаточно. Факторами патогенности являются [c.296]

    С полиморфизмом антигенов МНС связано такое явление, как генетический контроль иммунного ответа. В тех случаях, когда аминокислотные остатки, образующие щель у антигенов II класса, не в состоянии связать пептидный фрагмент чужеродного антигена, Т-хелперы остаются ареактивными и их помощь В-клет-кам не реализуется. Это обстоятельство и является причиной генетически детерминированного дефекта в иммунном реагировании (подробно см. гл. 3,10). [c.91]

    Эти ОПЫТЫ обнаруживают широчайший полиморфизм антигенов-мишеней, распознаваемых цитотоксическими клетками. Перекрестная реактивность мутантных антигенов была продемонстрирована также in vivo (Apt е. а., 1975) мыши Н-2 и сенсибилизированные инъекцией [c.213]

    Гипотеза о том, что гликопротенны МНС, ассоциируясь с чужеродными антигенами, представляют эти антигены Т-клеткам, позволяет правдоподобно объяснить исключительный полиморфизм молекул МНС. В ходе эволюционного сражения между микробами и иммунной системой позвоночных микробы должны иметь склонность к изменению своих антигенов, чтобы избежать ассоциации с молекулами МНС. Если какое-нибудь изменение окажется в этом смысле эффективным, новая форма сможет широко распространиться и вызвать эпидемию (или эпизоотию). При таких обстоятельствах немногие особн внда-хозяина, продуцирующие новую молекулу МНС, которая можег связываться с измененным антигеном микроорганизма, получат большое селективное преимущество. Таким образом, отбор будет способствовать поддержанию большого разнообразия молекул МНС в популяции. [c.64]

    Шим и Бирн [198] исследовали гаптоглобиновый полиморфизм с иммунологической точки зрения. Чтобы показать, что антигенные детерминанты молекулы гаптоглобина находятся как в а-, так и в р-ценях, были использованы антитела к очищенному гаптоглобулину сыворотки человека типа 1-1. [c.256]


    Новый принцип генетического анализа. Обнаружение мультигенных семейств мышечных белков дало в руки исследователей новый принцип генетического анализа. До недавнего времени анализ генов начинался с выявления генетической изменчивости. Ее можно констатировать на фенотипическом уровне, например благодаря наличию наследственной болезни, или на некотором промежуточном уровне-по отсутствию функционального белка, по электрофоретическим вариантам белка или по разным антигенным детерминантам на клеточной поверхности. Фенотипическую изменчивость затем связывали с соответствующим полиморфизмом на генном уровне. Генетические варианты часто служат экспериментальным инструментом для раскрытия основных механизмов действия гена. Однако для семейства актиновых или миозиновых генов неизвестны ни нормальные, ни патологические генетические варианты. Генетический анализ начинается с белка и генов как таковых безотносительно к межиндивидуальным различиям. Это стало возможным благодаря тому, что теперь в распоряжении исследователей имеется, если нужно, большое количество матричной РНК для этих белков. В настоящее время перед медицинскими генетиками стоит задача выявить наследственные заболевания, которые могут быть вызваны генетическими изменениями актиновых или миозиновых генов. Возможно, однако (хотя и вряд ли), что такие болезни просто не существуют-либо потому что любой генетический дефект актина или миозина ле-тален, либо потому что экспрессия гена в мультигенном семействе настолько эластична , что мутации в одном локусе компенсируются активностью других локусов. [c.139]

    Независимо от этих методов антигены HLA-D можно типировать стандартным лимфотоксическим тестом, проводимым на обогащенных В-лимфоцитами клеточных суспензиях. В противоположность антигенам HLA-A, HLA-B и HLA- , которые экспрессируются на поверхности Т- и В-клеток, антигены HLA-D обнаруживаются преимущественно на В-клетках и макрофагах. Впрочем, пока еще остается открытым вопрос, полностью ли идентичны HLA-D-антигены, выявляемые СКЛ-типи-рованием и серологическими реакциями. На рис. 3.39 представлены биохимическая модель белков HLA и их топография на клеточной мембране. HLA-район анализировали также на молекулярном уровне с помощью методов рекомбинантных ДНК (разд. 2.3). Были идентифицированы и сек-венированы нуклеотидные последовательности генов основных классов HLA-антигенов и родственных им генов и псевдогенов, кроме того, обнаружен полиморфизм по сайтам рестрикции [621 652 839]. [c.217]

    На первый взгляд такое предложение звучит парадоксально мы начинали с фенотипа, поскольку не было другого подхода к генотипу. Любой другой путь оказывался перекрытым самой природой генетического материала. Вместе с тем мультифакториальная модель основана на совместном действии многих генов. С другой стороны, анализ генетически полиморфных систем оказался успешным в раскрытии природы изменчивости генов, определяюших первичную структуру антигенов клеточной поверхности, а также ферментов и сывороточных белков с множеством разных (и во многих случаях неизвестных) функций. Следовательно, нет ничего искусственного в том, чтобы попытаться выяснить, не являются ли некоторые из этих полиморфизмов компонентами мультифакториальной подверженности при патологии. [c.261]

    Полиморфизм и болезнь. Некоторые высокополиморфные гены человека могут быть частью генетической компоненты дифференциальной подверженности заболеванию. В качестве примера можно привести зависимый от малярии полиморфизм HbS, Р Талассемию, недостаточность глюкозо-6-фосфатдегидрогеназы (G6PD), а также антиген Даффи [1952]. Ассоциации аллелей HLA-системы с некоторыми заболеваниями часто представляют особый интерес и могут быть связаны с различиями в иммунном ответе на собственные антигены [48]. С патофизиологической точки зрения ассоциации различных заболеваний с группами крови АВО менее ясны [211]. Наиболее успешным подходом к использованию полиморфных маркерных генов будет тот, который ориентируется на маркеры, патофизиологически связанные с заболеванием. Случайные генетические маркеры, исследуемые при случайно выбранных заболеваниях, вряд ли приведут к получению значимых результатов. [c.299]

    При наличии всех перечисленных требований к антигену его потенциальная способность к инициации иммунного ответа может остаться нереализованной, если иммунизируемый организм по тем или иным причинам неспособен воспринять чужеродную информацию. Одно из требований к отвечающему организму — это наличие соответствующих генов иммунного ответа (1г-генов). Полиморфизм по 1г-генам определяет неоднозначность ответа различных индивидуумов к одному и тому же антигену. Следует также заметить, что развитие той или иной силы иммунного ответа зависит как от дозы антигена, так и от способа его введения. Низкая доза сильного иммуногена не является гарантом полноценного иммунного ответа даже у тех индивидуумов, которые обладают соответствующим 1г-геном. Способ введения антигена также является ограничивающим фактором для проявления иммуногенности. Так, например, некоторые бактериальные антигены при непосредственном попадании в желудочно-кишечный тракт не способны преодолеть кислотность желудочного сока как естественного барьера. В то же самое время эти же бактерии, введенные непосредственно в кровь, проявляют сильную иммунногенность. Проявление иммуногенных свойств антигена может быть блокировано также врожденным или приобретенным патологическим состоянием самой иммунной системы. Иммунодефищп по тем или иным факторам специфической защиты будет препятствовать проявлению специфических свойств полноценных антигенов. [c.49]

    Полигенность и полиморфизм определяют антигенную индивидуальность особей данного вида. [c.87]

    Наряду с полигенностью МНС характеризуется крайне выраженным полиморфизмом (рис. 3.7). Ни одна другая генетическая система организма не имеет такого количества аллельных форм определенного гена, как МНС. У человека наибольшее число аллельных вариантов (от 20 до 72) известно для генов I класса и ОРр, ООр и ОКр генов II класса. Гены, контролирующие а-цепь антигенов II класса, характеризуются меньшей изменчивостью, а у гена ОКа она по неизвестным причинам вообще отсутствует. Гомологом такого инвариантного гена у мышей является Еа. Число аллелей различных генов, представленное на рис. 3.7, выявлено для кавказской популяции (белой расы). Индейцы Америки и коренное население Востока имеют дополнительные аллели. Крайне высокий уровень аллельных генов и доминирующее присутствие в популяции гетерозигот при условии кодоминантного наследования обусловливает индивидуальность особей вида по антигенам МНС [c.90]

    Долгое время биологический смысл столь выраженного полиморфизма оставался непонятным, хотя какое-то ( ) селективное значение такой аллельной изменчивости было очевидным. В последние несколько лет доказано, что подобный полиморфизм прямо связан с процессом презентации антигенных эпитопов Т-клеткам. [c.90]

    Несмотря на значительный полиморфизм и полигенность молекул МНС, каждая конкретная клетка, в которой происходит переработка антигена, обладает ограниченным количеством вариантов этих молекул. При этом количество пептидов, образующихся в результате протеолиза чужеродных антигенов, велико. В связи с этим возникает естественный вопрос каким образом строится специфичность комплекса пептид молекула МНС Строгая конформационная специфичность, известная для взаимодействия антител или иммуноглобулиновых рецепторов с антигеном, в данном случае не может проявиться в силу охраниченности вариантов молекул I и II класса в клетке конкретного индивидуума. Изучение различных комплексов пептидов с молекулами МНС при их кристаллизации помогло выяснить картину связывания охрани-ченного числа молекул I и II классов МНС с различными фрагментами антигенов. [c.97]

    Эти антисыворотки наиболее полезны для исследований полиморфизма в пределах вида. К сожалению, их получение часто оказывается затруднительным, особенно антисывороток к антигенам МНС. Дело в том, что методики, даюш.ие наилучшие результаты при получении аллоантисывороток, включают предварительную трансплантацию кожи животному, предназначенному для иммунизации. После полного отторжения трансплантата животному делают разрешающие инъекции эритроцитов или лимфоцитов от донора кожи (несколько миллионов клеток на инъекцию для лягушки массой 50—100 г без адъюванта) и берут у него кровь через 2 нед после последней иммунизации. Если титры антител высокие, а специфичность антисыворотки соответствует ожидаемой, то кровь у животных можно брать повторно через 1—2 нед без дополнительных антигенных инъекций. После этого повторными разрешающими инъекциями (например, раз в два месяца) поддерживают образование антител на необходимом уровне. [c.488]

    Приводимый ниже пример взят из работы Пьяцца и сотр. (Piazza et al., 1973), которые исследовали полиморфизм по антигенам гистосовместимости (HLA) у жителей острова Сардиния— весьма изолированной географической области Средиземноморья. Комплекс HLA, так же как и Н-2 у мышей, контролируется многими сцепленными генами, каждый из которых имеет несколько аллелей. Мы рассмотрим здесь только два локуса,. HLA-A и HLA-B, и оценим распределение двух аллей AwSQ (локус А) и В18 (локус В). При обследовании 403 лиц обнаружено следующее распределение фенотипов  [c.465]

    I Карманы антигенсвязывающей полости могут вмещать пептиды различной структуры в зависимости от гаплотипа МНС. Высокий полиморфизм молекул МНС, а также способность каждой АПК экспрессировать несколько разных молекул МНС обеспечивают возможность пре-эентации Т-клеткам множества самых различных антигенных пептидов. [c.114]

    Нельзя также исключать, что вакцинопрофи-лактика паразитарных заболеваний человека столь проблематична отчасти из-за полиморфизма и быстрой изменчивости многих паразитарных антигенов. Например, при моделировании малярии на мелких животных не обнаружено такой активной антигенной изменчивости, какая [c.371]

    Минорные системы групп крови Эпитопы системы MN представлены N-концевыми гликозилиро-ванными участками гликофорина А — гликопротеина поверхности эритроцитов. Антигенность определяется полиморфизмом аминокислотных остатков 1 и 5. Носителем антигенов близкой системы Ss является гликофорин В. Зависимость групп крови от поверхностных белков эритроцитов представлена на рис. 24.8. Минорные группы [c.445]

    Антигены класса I управляют взаимодействием между цитотоксическими Т-лимфоцитами и их клетками-мишенями. Антигены класса II контролируют взаимодействие Т-клеток с антиген-презентирующими клетками. Интересно, что вирусы сыграли главную роль в раскрытии и экспериментальном анализе функции генов МНС и их продуктов. Многие полагают, что именно подавление вирусов и других внутриклеточных патогенных агентов было первичной движущей силой эволюции и полиморфизма генов МНС, особенно для антигенов класса I. Эта точка зрения обсуждается ниже. [c.8]

    У мышей выраженность Тс-ответа на индивидуальный вирус контролируется генами иммунного ответа, расположенными в локусах Н2 К или D. Это позволяет предположить, что одни индивидуальные Н2-гаплотипы плюс вирус вызывают более сильный Тс-ответ, чем другие. Есть также данные исследований на людях, показывающие, что некоторые антигены класса ассоциируются с низким Тс-ответом на отдельные вирусы. Делаются попытки объяснить этим значительный полиморфизм HLA-A и -J5-лoкy oв у человека. Согласно данному представлению, широкий ряд антигенов класса I, имеющийся в популяции, должен обеспечить адекватный Тс-ответ на различные вирусы, с которыми сталкивается данная популяция [12, 13]. Кроме того, выдвинуто предположение, что связь различных заболеваний человека с индивидуальными HLA-антигенами может быть следствием генетического контроля этого типа Тс-ответа на инфекцию. [c.15]


Смотреть страницы где упоминается термин Полиморфизм антигенов: [c.92]    [c.67]    [c.75]    [c.222]    [c.246]    [c.86]    [c.131]    [c.135]    [c.279]    [c.452]    [c.250]    [c.254]    [c.45]    [c.159]   
Сборник Иммуногенез и клеточная дифференцировка (1978) -- [ c.50 , c.207 , c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Антигенность

Антигены

Полиморфизм



© 2025 chem21.info Реклама на сайте