Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород хлористый, температура кипени

    Значения температуры кипения и теплоты испарения жидких галогеноводородов, приведенные в табл. 26.3, свидетельствуют о том, что наименьшая тенденция к ассоциации имеет место у хлористого водорода. Энергия связи в ряду НР — Н1 уменьшается, что обусловлено резким возрастанием числа электронов в атомах галогенов в ряду Р — I, а также уменьшением различия в энергии уровней и подуровней по мере увеличения числа электронных слоев. В результате этого уменьшается степень перекрывания орбиталей водорода и галогена и возрастает межатомное расстояние. Моменты диполей галогеноводородов в связи с уменьшением тенденции к разделению зарядов и увеличением межатомных расстояний в той же последовательности существенно уменьшаются. [c.317]


    Критерием чистоты газа может служить давление насыщенного паря сжиженного хлористого водорода при температуре кипения, а также Другие физические константы, например тем- [c.134]

    Объяснить, почему температуры кипения и плавления у хлористого водорода наименьшие, а у фтористого водорода наибольшие. [c.156]

    Если к безводной перекиси водорода при температуре кипения добавить хлористый калий или воду, то взрыв не наступает, но при 160 С происходит очень сильное разложение с воспламенением. [c.121]

    Продукт реакции н-гексана с хлористым алюминием и хлористым водородом при температуре кипения с обратным холодильником состоял из изобутана и смеси парафиновых углеводородов, кипевших выше и ниже н-гексана, одним из компонентов этой смеси оказался 2-метилпентан [43]. [c.49]

    При переработке газообразных в нормальных условиях углеводородов методика применения избытка углеводорода сравнительно проста, так как температуры кипения исходного углеводорода и продукта его хлорирования значительно различаются. Выходящие из реактора газы, которые при проведении реакции с полным использованием хлора состоят из непревращенного углеводорода, хлористого водорода и продуктов хлорирования, подвергают фракционированию при условиях, при которых исходный углеводород остается в газообразнО М состоянии. [c.197]

    Значительно труднее осуществляется такой процесс при хлорировании высокомолекулярных углеводородов, например додекана или гексадекана. При таком размере молекулы температуры кипения исходного углеводорода и продукта его хлорирования различаются незначительно, вследствие че го для фракционирования требуются ректификационные колонны с высокой четкостью погоноразделения. Ректификацию следует проводить под возможно низким давлением, так как всегда существует опасность, что в результате отщепления хлористого водорода хлорированный продукт превратится в олефин. [c.197]

    Хлористый водород НС1 — в обычных условиях бесцветный газ с резким специфическим запахом, с температурой кипения -84,8°С и температурой плавления -114,2°С. Легко сжижается, критическая температура составляет 51,4°С, критическое давление 8,2 МПа. Хлористый водород хорошо растворим в воде при давлении 0,1 МПа растворимость его равна при 0°С 525 л/л (82,3 г/100 г воды), при 18°С 451 л/л (70,7 г/100 г воды). Растворим в этаноле, диэтиловом эфире и других органических растворителях. Токсичен. ПДК — 5 мг/м . [c.349]


    К числу реакций, проводимых описанным выше способом, относятся, например, реакции с водным аммиаком, хлористым, бромистым и иодистым Водородом при высоких температурах, так как из открытых сосудов газы улетучиваются и их концентрация в реакционной среде оказывается недостаточной для протекания реакции. Кроме того, под давлением проводят некоторые реакции дегидрирования (дегидрирование палладием, серой, селеном), Которые требуют нагревания до температур, превышающих температуры Кипения реагирующих веществ. Примером работы в запаянных трубках является также восстановление по Кижнеру — Вольфу. При работе с небольшими [c.109]

    Несмотря на то, что азеотропные смеси обладают постоянным составом и температурой кипения, они ие представляют собой определенных химических соединений, как это считали раньше. Состав таких смесей изменяется с изменением давления. Например, азеотропная смесь хлористого водорода и воды содержит 19% НС1 при перегонке под давлением, в 2 раза большим нормального, и 20,2% при перегонке под нормальным давлением. Однако только благодаря классическим исследованиям русского химика Д. П. Коновалова (1881 — 1884), на основе открытого им второго закона, окончательно была установлена природа азеотропных смесей. [c.240]

    Основной примесью в тазе является хлористый водород. Вследствие низкой температуры кипения хлористого водорода хлористый нитрозил может быть легко освобожден от него методом фракционированной дистилляции. [c.205]

    Колбу подогревают на водяной бане причем происходит энергичное выделение газов (примечание 2). Реакцию можно считать оконченной, когда выделение хлористого водорода и сернистого газа прекратится. Нагревание прекращают, отключают обратный холодильник, боковую трубку колбы соединяют с холодильником Либиха и отгоняют не вошедший в реакцию хло ристый тионил, нагревая колбу на водя ной бане. Остаток перегоняют в вакууме Температура кипения 13Г/П мм рт, ст. 136715 мм рт. ст., 154725 жж рт. ст., 170758 рт. ст., т. пл. 35—36° Выход хлористого циннамоила составляет 35—41,5е(8б—97% от теорет.) [c.430]

    В простейшем случае образовавшаяся вода связывается прибавленной в качестве катализатора кислотой (серная кислота, хлористый водород). В случае неустойчивых соединений лучше удалять воду азеотропной отгонкой, поскольку при этом можно довольствоваться меньшими количествами (и к тому же менее активного) катализатора. Выбор растворителя, с которым отгоняется вода, производят с учетом температуры кипения самого низ-кокипящего компонента реакционной смеси. Для получения этиловых, а также пропиловых эфиров пригодны хлороформ или четыреххлористый углерод 1). Высшие спирты, начиная с бутилового, [c.75]

    Получают аналогично № 123, п. 1, из 180 г (6 молей) параформа, 0,24 л (6 молей) метанола и хлористого водорода и после отделения водно-кислотного слоя продукт перегоняют из колбы с дефлегматором, собирая фракцию с т. кип. 57—62° С выделяющийся хлористый водород поглощают в ловушке с водой (см. N" 121, Примечание 2). Фракцию с температурой кипения ниже 57 °С перегоняют повторно полученный при этом остаток, кипящий выше 57 °С, присоединяют к основной массе продукта. Получают 324 г метилхлорметилового эфира, выход 67%. [c.95]

    Температуры плавления и кипения веществ, атомы в молекуле которых связаны ковалентной полярной связью, и обладающие молекулярной решеткой, также низки, но выше чем у веществ с неполярными молекулами. В большинстве своем это газы при комнатной температуре. Примером может служить хлористый водород, сероводород и т. п. Прямой зависимости между величиной дипольного момента и температурой кипения не наблюдается. Скорее всего, она определяется молекулярной массой соединения, за исключением аммиака, воды и фтористого водорода. Эти соединения в ряду им подобных обладают наивысшими температурами плавления и кипения, резкое их увеличение объясняется образованием между молекулами водородных связей. [c.46]

    При перегонке в вакууме лучше не включать в систему манометр до тех пор, пока не будут удалены непрореагировавший фенол и большая часть хлористого водорода. Чтобы смесь не кипела толчками, колбу следует нагревать пламенем горелки, придавая последней от руки вращательное движение и направляя пламя на поверхность кипящей жидкости. Если пары перегреть слишком сильно, то температура кипения может возрасти до 220° (15 мм). [c.443]

    Если хлористый водород не пропускать, то хлорангидрид имеет растянутую температуру кипения и перегоняется с некоторым разложением. Причина этого описана в статье [c.210]

    Часто в качестве катализатора применяют хлористый водород. Раньи е в раствор органической кислоты в соответствующем спирте пропускали струю хлористого водорода при температуре. кипения жидкости. Но достаточно растворить в спирте 3% хлористого водорода, который оказывает каталитическое влияние на этерификацию спирта при нагревании его с органической ккслотоп. [c.182]


    Разделение на фракции проводили ректификацией. О положении хлора в молекуле судили по физическим константам фракций (температура кипения, показатель преломления, плотность), сравнивая их с литературными данными. Омылением фракции, принятой за первичный хлористый ундецил, получен спирт, который был переведен в ундекано-вую кислоту окислением перекисью водорода в щелочной среде. Выход по отдельным стадиям авторы не приводят. [c.558]

    Аскантщетно пытавшийся полимеризовать этилен в присутствии хлористого алюминия, предпринял такие же опыты над амиленом этот последний при обработке на хол оду равным по весу количеством хлористого алюминия даёт нафтеновые углеводороды с высокой температурой кипения, с меньпгим содержанием водорода, чем у полнметиленовых углеводородов, и по свойствам аналогичные смазочным маслам. Содержанке парафиновых углеводородов возрастает вместе с температурой. [c.324]

    Образование этого последнего углеводорода может быть объяснено только присоединением, под влиянием катализатора, к углеродной цепи амилена СН . Эти результаты вполне подтвердились работами Энглера и Рутала , которые полимеризо али амилен в присутствии хлористого алюминия как на холоду, так и при умеренном нагревании (температура кипения амилена). Водород, необходимый для образования парафин эвых углеводародов, вероятно выделяется из углеводородов, составляющих смазочное масло, и возможно, что нафтены образуются дсак прямо из олефинов, так и из промежуточных полиолефинов. [c.325]

    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    В Круглодонную трехгорлую колбу емкостью 2 л, снабженную мешалкой, обратным холодильником, термометромл капельной воронкой, помеш,ают 134 г (1 моль) измельченного безводного хлористого алюминия и 450 г (часть от общего количества 700 г— 4,5 моля) сухого четыреххлористого углерода (примечание 1). Форштосс обратного холодильника соединяют с трубкой, наполненной хлористым кальцием, а затем с прибором для поглощения хлористого водорода. Колбу охлаждают водой со льдом. Включают мешалку и после охлаждения смеси в колбе до температуры + 12° приливают 20 г (часть общего количества 156 г—2 моля) безводного, не содержащего тиофена бензола. С момента начала реакции выделяется хлористый водород и температура смеси возрастает колбу прй этом необходимо охлаждать льдом с солью (примечание 2). После того как температура, которая вначале сильно повышается, начнет понижаться, вводят по каплям остальное количество смеси бензола (136 г) и четыреххлористого углерода (250 г). Вначале бензол следует приливать очень медленно, чтобы, не прерывая начавшуюся реакцию, обеспечить тю возможности быстрое охлаждение реакционной смеси до температуры +10°. Затем скорость приливания следует увеличить, поддерживая, однако, температуру реакции в пределах от 5 до 10° (примечание 3). При хорошем охлаждении приливание бензола продолжается около 1 часа. Смесь перемешивают еще 2 часа, поддерживая температуру около +10°, мешалку выключают и смесь оставляют на ночь. Затем включают мешалку, охлаждают смесь до +5° и через капельную воронку приливают 100 мл воды с такой скоростью, чтобы поддерживалось легкое кипение четырех-.хлористого углерода. [c.306]

    В круглодонную колбу емкостью 6 л, снабженную обратным холодильником и термометром, вливают 956 мл (765 г, 16 молей) этилового спирта. Колбу охлаждают и через холодильник вливают порциями 748 мл (1378 г, 13,5 моля) концентрированной серной кислоты. Кислоту следует приливать медленно, встряхивая время от времени содержимое колбы, так, чтобы температура смеси не превысила 40 . Раствор охлаждают до 20° и, сняв холодильник, быстро всыпают 825 г сухой натриевой соли циануксусной кислоты, после чего вновь присоединяют обратный холодильник. Прибор помещают под тягу и колбу встряхивают. Температура смеси быстро повышается, и начинает выделяться хлористый водород (примечание 1). Когда температура перестанет повышаться за счет теплоты реакции, колбу начинают медленно нагревать на масляной бане до температуры кипения жидкости. Эту температуру поддерживают 4—5 часов, время от времени встряхивая колбу (примечание 2). Охладив затем смесь до 30—40 , добавляют 500 мл бензола, колбу встряхивают, вливают в нее 2 л воды и в делительной воронке отделяют водно-спиртовой слой от бензольно-эфирного (примечание 3). Бензольный экстракт нейтрализуют, промывая 10%-ным водным раствором карбоната натрия, на-сьщенного поваренной солью (примечание 4), а затем водой. Бензольный экстракт перегоняют сперва под атмосферным давлением до 90 , а затем в вакууме, собирая фракцию с т. кип. 80°/4 мм рт. ст., =1,055—1,061 (примечание 5). [c.364]

    Смесь 138 г (3 молей) абсолютного спирта и 100 мл безводного бензола помеш.ают в трехгорлую колбу емкостью 1,5 л, снабженную мешалкой с ртутным затвором, капельной воронкой и термометром. Прибор соединяют через хлоркальциевую трубку с прибором для поглощения хлористого водорода. После пуска в ход мешалки и охлаждения смеси до 10 начинают приливать по каплям из капельной воронки смесь 137 г (1 моля) свежеперегнанного треххлористого фосфора и 100 жл безводного бензола. Температуру поддерживают в пределах 5—10°. Треххлористый фосфор добавляют в течение - 1 часа. Затем содержимое колбы возможно быстрее переносят в колбу, снабженную насадкой с дефлегматором Вигре, к которому присоединяют холодильник Либиха, а затем паук с двумя приемниками. Для удаления хлористого водорода через капилляр пропускают ток сухого воздуха, протягивая его при поыощи водоструйного насоса и создавая пониженное давление. Колбу на это время погружают в водяную баню с температурой 15—20 . Удаление хлористого водорода длится около 3 часов, при этом одновременно отгоняется большая часть растворителя. Остаток растворителя удаляют постепенно,, повышая температуру водяной бани до температуры кипения растнора. Оставшийся в колбе почти бесцветный сырой продукт перегоняют в вакууме, собирая фракцию с т. кип. 74—75°/14 мм рт, ст, (примечание 1). [c.381]

Рис. 281. Состав пара, находящегося ь равоовесин с раствором хлористого водорода в воде при температуре кипения Рис. 281. <a href="/info/16218">Состав пара</a>, находящегося ь равоовесин с <a href="/info/291981">раствором хлористого водорода</a> в воде при температуре кипения
    Эти соединения представлены в плане зависимости биологических свойств от замещения галоидами атомов водорода в боковой цепи те же закономерности просмотрены на модели банзоирифторида. при его цитро-вании и аминировании. Физико-химические свойства соединений ряда представлены в табл. 88. Все хлорпроизвод-ные толуола — жидкости, причем с увеличением числа атомов хлора в молекуле возрастают относительная плотность, температура кипения, показатель преломления,. упругость пара и летучесть уменьшаются. Следует обратить особое внимание на резкое падение энергии разрыва связи углерод—хлор в боковой цепи молекулы хлористого бензила по сравнению с энергией разрыва связи углерод— водород в молекуле толуола. [c.215]

    Реакционную массу тщательно перемешивают и нагревают в бане с горячей водой (50—60° примечание 5) затем баню отставляют и приливают к смеси хлорангидрид фумаровой кислоты с большой скоростью, ограниченной лишь необходимостью избежать слишком быстрого выделения хлористого водорода ирили-вание продолжается в течение 15—25 мин. (примечание 6 и 7). Смесь окрашивается в темнокрасный цвет, и температура ее быстро достигает температуры кипения. Происходит энергичное выделение хлористого водорода. После этого смесь поддерживают при слабом кипении в течеиие 10 мин., перемешивая ее. [c.170]

    Снова устанав.пивают баню со льдом и к смеси прибавляют 250 мл хлористого этилена. Когда температура реакционной смеси упадет до 5°, к охлажденной смеси при перемешиванш в течение 1 часа прибавляют через чистую капельную воронку раствор 67 г (1,0 моль) свежеперегнанного пиррола в 250 мл хлористого этилена. Когда прибавление будет закончено, баню со льдом заменяют на колбонагреватель н смесь перемешивают 15 мин, при температуре кипения, причем в течение эюго времени происходит обильное выделешю хлористого водорода, [c.44]

    Получение н-хлористих алкилов. В колбу, снабженную мешалкой с ртутным затвором, обратным холодильником, капельной воронкой и термометром, загружают 135 г 96%-ного (1,1 М) хлористого тионила и 0,08 г (0,01 М) диметилформамида. При 20—25° и размешивании прибавляют в течение 1,5 часов 1 моль соответствующего спирта, после чего размешивают еще 30 минут прн той же температуре. Затем отсоединяют обратный холодильник н ртутный затвор с мешалкой, вста1в-ляют насадку типа Вюрца, соединенную с нисходящим холодильником, и постепенно, по мере ослабления выделения хлористого водорода, повышают температуру до кипения и отгоняют образовавшийся хлористый алкил. Дистиллат промывают 5%-ным раствором едкого натра до нейтральной реакции [c.45]


Смотреть страницы где упоминается термин Водород хлористый, температура кипени: [c.68]    [c.55]    [c.326]    [c.211]    [c.39]    [c.94]    [c.633]    [c.251]    [c.119]    [c.295]    [c.117]    [c.56]    [c.563]    [c.588]    [c.17]    [c.87]    [c.140]    [c.87]   
Техника низких температур (1962) -- [ c.307 ]




ПОИСК





Смотрите так же термины и статьи:

Водород температура кипения

Хлористый водород



© 2025 chem21.info Реклама на сайте