Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Океанические воды

    В данной главе мы узнаем о том, что вода на поверхности нашей планеты подразделяется на соленую и пресную. Мы обсудим состав океанической воды, а также некоторые из ее физических и химических свойств. Равновесия между океанами и атмосферными газами играют важную роль в поддержании жизни в океанах и даже на суше. Океаны представляют собой огромный, практически неисчерпаемый источник химических и минеральных ресурсов. [c.143]


    Реки ежегодно вносят.в океан около 1,5 млн.т карбоната кальция, однако солевой состав океанической воды остается практически неизменным. Объясните, почему  [c.103]

    С тех пор как люди стали следить за составом океанической воды, он остается неизменным. Конечно, химические данные о составе морской воды известны всего за ка-кие-нибудь неполные 100 лет. Если ее состав и подвергается изменениям, то Э1о, вероятно, происходит за гораздо большие промежутки времени, чем 100 лет. Однако существуют и другие доказательства, подтверждающие, что химический состав океанов существенно не менялся за долгие периоды. [c.145]

    Атмосферный диоксид углерода находится в равновесии с диоксидом углерода, растворенным в океане. Равновесие между атмосферным СО 2 и СО2 в слое океанической воды глубиной приблизительно 100 м устанавливается в среднем за два года . Поверхностные воды находятся в равновесии и с более глубинными водами, но эго равновесие устанавливается гораздо медленнее, в течение нескольких тысяч лет. [c.145]

    ХИМИЧЕСКИЙ СОСТАВ ОКЕАНИЧЕСКОЙ ВОДЫ [c.25]

    Мировой океан — величайшее богатство человечества. Уже сегодня он приобретает важнейшее значение как источник питательных веществ и минерального сырья. В океанической воде, например, в весьма малых концентрациях растворены многие редкие элементы, представляющие большую ценность для современной техники. Ориентировочно [1, с. 27] в морской части планеты сосредоточено 90 млрд. т иода. 5 млрд. т урана, по 3 млрд. т марганца, ванадия и никеля, 6 млрд. т золота. [c.327]

    Зона фотосинтеза (разд. 17.1)-верхний слой океанической воды толщиной до 150 м, в котором происходит рост фито- [c.167]

    Концентрационные элементы являются источниками электрических потенциалов и токов между участками с различной концентрацией ионов в живых организмах, растениях, в земной коре, океанических водах и т. п. [c.273]

    В табл. 1.4 приведено содержание главных ионов в океанической воде. [c.13]

    Аналогично — является ли океаническая вода одной фазой Приведите другие подобные примеры фаз. [c.160]

    Галоген со держащие соединения. Наиболее распространенной примесью в атмосфере является хлор-ион, входящий в состав аэрозолей морских солей (Na+, К+, 80 )или твердых частиц пыли. По имеющимся данным, содержание хлора в дождевой воде изменяется от 1 мг/л вдоль морского побережья до 0,1 мг/л — в континентальных районах. Если принять количество сульфатов, инжектируемых в атмосферу в виде аэрозолей морских солей, равным 45 Тг/год, а отношение [С1 ]/[50, ] =7 (в океанической воде), то в глобальном масштабе, не учитывая других источников С1 , в атмосферу поступает около 300 Тг/год хлоридов с поверхности океанов. [c.15]


    Гидросфера состоит из пресной и соленой воды на поверхности Земли, а также из кристаллической воды, которая образует континентальный снег и лед. Согласно данным Гольдшмидта, на каждый квадратный сантиметр земной поверхности приходится 273 л воды, причем 268,5 л из этого количества находится в виде океанической воды, 0,1 л в виде пресной воды, а 4,5 л в виде континентального льда. [c.443]

    По мере того как возрастает заселенность районов вблизи морских берегов, увеличивается потребность в опреснении морской воды. Это делает экономически оправданным превращение океанической воды в пресную воду. Здесь мы рассмотрим несколько способов опреснения морской воды, перечисляя их в порядке повышения стоимости. [c.510]

    Однако активность процессов самоочищения Северного моря у берегов всех прилегающих к нему стран - ФРГ, Нидерландов, Бельгии, Франции, Англии, Норвегии и Дании - до сего времени значительно переоценивалась. Средняя глубина моря ближе к берегам (на шельфе) составляет 80 м, на Доггер-Банке - даже 20 м, так что в сравнении с Атлантикой (средняя глубина 3500 м) это прямо-таки чайное блюдце . Реки, впадающие в Северное море, будь то Рейн или Везер, Эльба или Темза, давно уже несут в него не чистую воду, а тонны грязи и отбросов. Даже соленая океаническая вода не способна справиться с этим. [c.24]

    Концентрация органических кислот и сложных эфиров редко превышает пределы 40—200 и 50—100 мкг/л. Содержание углеводов несколько выше и нередко достигает единиц миллиграммов в 1 л. Значительную часть органического вещества природных вод составляют гумусовые вещества гуминовые кислоты и фульвокислоты. Особенно богаты гуминовыми веществами воды северных районов страны, где концентрация их часто составляет единицы и десятки миллиграммов на 1 л. В морских и океанических водах среднее содержание гумусовых веществ ниже и редко превышает 3 мг/л. [c.136]

    Мировой океан - непрерывная водная оболочка Земли, окружающая континенты и острова, - занимает около 70,8 % земной поверхности. Океанические воды распределены между полушариями неравномерно в Северном они покрывают 66 %, а в Южном - 81 /] поверхности. По географическим особенностям Мировой океан делят на четыре части, основные морфометрические показатели которых приведены в табл. 1.3. [c.22]

    Распределение взвешенных частиц по размерам характеризуется двумя максимумами преобладают частицы с радиусом 0,5-1,0 и 25-50 мкм. Таким образом, это тонкодисперсный материал с большой удельной поверхностью (50-200 м /г). Если в столбе океанической воды с площадью поперечного сечения 1 м содержится 2000 г взвесей, то суммарная поверхность частиц в нем может достигать 4 Ю" м . Большая удельная поверхность определяет высокие сорбционные характеристики взвесей, которые могут захватывать при осаждении на дно океана как растворенное органическое вещество, так и минеральные компоненты, в частности, ионы тяжелых металлов. [c.31]

    Еще более сложными и усовершенствованными являются блочно-диффузионные модели, учитывающие вертикальные движения океанических вод. В частности, океан ниже слоя перемешивания может рассматриваться в качестве горизонтальной однородной среды, в которой перенос углерода в вертикальном направлении описывается уравнением вида  [c.93]

    Казалось бы, химический состав океанического аэрозоля должен полностью соответствовать составу морской воды. Действительно, основными составляющими частиц являются главные компоненты солевого состава воды. Однако морской аэрозоль оказывается аномально обогащенным некоторыми элементами, такими как РЬ, Си, Мп, Ре, d, Н , Ag, гп. Коэффициент обогащения по отношению к натрию океанической воды для калия и магния примерно равен 1, для кобальта - 10, меди - 800, марганца - 1000, свинца - 4000, алюминия - 5000, железа - 10 и цинка - 2 Ю . По некоторым расчетам, океанический источник ответственен за поступление в атмосферу от 5 до 20 % таких элементов, как медь, ванадий и цинк (эмиссия железа, цинка и меди из океанов оценивается значениями 2,6, 1,4 и 0,17 Мт/год соответственно). [c.127]

    Дифференциальные уравнения описывают целый класс однородных явлений (например, одним уравнением - Навье - Стокса - описываются такие разные, на первый взгляд, явления, как движение жидкости по трубопроводам и каналам и перемещение больших объемов океанической воды и атмосферного воздуха). Для практического использования этих уравнений следует при их решении учитывать ограничения, вытекающие из свойств конкретного явления (процесса). Для химико-технологических процессов такими ограничениями могут быть пределы изменений геометрических характеристик аппаратов, физических свойств веществ и т.п. Поэтому для выделения конкретного явления из класса явлений, описываемых единой системой дифференциальных уравнений, необходимо эти уравнения ограничить дополнительными условиями, которые называют условиями однозначности, т. е. условиями, которые полностью, однозначно характеризуют данное явление (например, температура насыщенного пара полностью, т.е. однозначно определяется его давлением). [c.63]


    При взаимодействии тепловых нейтронов с ядрами элементов земной коры, пресных и океанических вод образуются такие радионуклиды, как кремний-31, железо-59, кальций-45, натрий-24, калий-42, фосфор-32, марганец-56, медь-64. [c.312]

    Главные ионы. К главным ионам, или макрокомпонентам природных вод относятся элементы, характеризующиеся высокими значениями кларков и хорошей растворимостью их соединений в воде. В некоторых случаях (это характерно для морских и океанических вод) к группе главных ионов относятся также Вг" и HS.  [c.133]

    Природные воды содержат органические вещества в сравнительно невысоких конценфациях. Средняя конценфация органического углерода в речных и озерных водах редко превышает 20 мг/л. В морских и океанических водах содержание Сорг еще более низкое. Содержание белковоподобных веществ, свободных аминокислот и аминов колеблется в пределах 20—340, 2—25 и 6—200 мкг азота на 1 л соответственно. [c.135]

    Элементы, распределяющиеся по типу питательных веществ, обычно имеют очень длительные времена пребывания в океанах. Времена пребывания N07, кремния и фосфора составляют по оценкам 57000, 20000 и 69000 лет соответственно (табл. 4.6). Наличие обширных резервуаров питательных веществ в глубинных океанических водах означает, что увеличение концентрации N07 в речных водах в результате человеческой деятельности (см. п. 3.7.5) оказывает небольшое влияние на концентрацию N07 в океанах (здесь предполагается, что N07 эффективно перемешивается в пределах всего объема океанов). Мы рассмот- [c.199]

    Растворенное органическое вещество океанической воды на 30-70 % состоит из гумусовых веществ, как аллохтонного (поступающего главным образом с речным стоком), так и автохтонного происхождения, образовавшегося в океане при гумификации дет puma - мертвых остатков растительных и животных организмов, в группу РОВ входят также сахара, аминокислоты и высшие жирные кислоты. [c.30]

    Предьщущее обсуждение поведения микроэлементов в морской воде было основано на допущении, что океаны имеют единый теплый, обедненный питательными веществами верхний смешанный слой и статическую глубоководную зону. На самом деле, в высоких широтах поверхностные океанические воды достаточно холодны и могут нарушить стратификацию по плотности и перемешать воду в океанах на глубину до 1000 м. Плотная поверхностная вода опускается и медленно перетекает в центральную часть океана в виде холодного обогащенного кислородом слоя, который замещает нижележащую воду. Замещенная вода принуждена медленно двигаться вверх, что создает океаническую циркуляцию (рис. 4.18 и 4.19). [c.206]

    В глубинных океанических водах, где циркуляция гораздо более медленная, вертикальное перемешивание обычно моделируют в виде процесса диффузии. Кроме того, модель может включать простую циркуляцию с непосредственным привносом из поверхностных вод на дно океана, уравновешенную движением воды вверх через глубинные океанические воды, чтобы отразить процессы конвекции. Пространственное и глубинное распределение радиоактивных веществ, таких, как изотоп С (см. вставку 1.1) (поступающих как из космических лучей, так и в результате ядерных взрывов в 1950-х и 1960-х), может быть использовано для оценки скоростей обмена СОз между атмосферой и поверхностными слоями океанов, его диффузии в глубинные океанические воды и транспорта в процессе вертикальной циркуляции. [c.225]

    Для хорошо перемешанных резервуаров записывается уравнение сохранения вещества, в котором приход С в результате привноса в резервуар (атмосферу или поверхностные слои океана) уравновешивается выносом в другие резервуары плюс радиоактивным распадом (см. вставку 2.6) микроэлемента во время его нахождения в резервуаре. Для глубинных океанических вод сохранение вещества описывается частичным дифференциальным уравнением адвекции-диффузии. Берется тот коэффициент диффузии, который лучше всего соответствует измеренному глубинному распределению С в океанах. [c.225]

    Преобразование ОВ уже в водной толще осуществляется достаточно энергично. А. И. Горская и Е. А. Глебовская в органическом детрите из поверхностных океанических вод обнаружили смолы и асфальтены, УВ не только метановые, но и нафтеновые и ароматические. Таким образом, состав ОВ даже в поверхностных водах характеризуется рядом черт, отличающих его от химического состава живых организмов и сближающих с ископаемой органической материей осадков. [c.214]

    Из общего количества воды 1350 млн км (свыше 97,2%) -океаническая вода. Баланс других источников (в км ) воды приведен ниже  [c.339]

    Постоянство состава воды в мировом океане свидетельствует о равновесии между процессами поступления и удаления воды. В океаны постоянно втекает речная вода, которая имеет совершенно другой минеральный состав, чем океаническая вода. Например, выветривание горных пород приводит к появлению в речной воде алюминия, кремния, железа или кальция. В морской воде эти элементы постепенно включаются в биологический цикл или удаляются из нее в результате осаждения. Поэтому среднее содержание многих элементов в океанической воде устанавливается в результа1е равновесия между скоростью процессов поступления этих элементов в морскую воду и удаления их из нее. Этим и объясняется более или менее постоянный состав океанической воды. [c.145]

    Некоторые из этих элементов, например магний и бром, извлекают из морской воды в промышленных масштабах. Состав морской воды может претерпевать некоторые изменения, особенно в тех районах, где испаряется больше воды, чем возмещается пресной водой рек и других источников. Например, в Красном море и Персидском заливе количество растворенных в воде веществ приблизительно на 14% превышает их среднее содержание в океанической воде на всем земном шаре. В результате повьш1енной биологической активности в отдельных частях океана заметно понижена концентрация кальция [c.443]

    Океанические воды находятся в непрерывном движении, что связано с различными факторами вращением Земли и Луны, атмосферной циркуляцией, землетрясениями и извержениями подводных вулканов и т. п. Масштабы этих движений сильно различаются. Одни из них, такие как приливные, охватывают всю массу воды от поверхности до дна другие (например, ветровые волны) затрагивают лишь верхний слой до глубины 50-60 м. Благодаря этим движениям происходит выравнивание гидрологических и гидрохимических характеристик океанической воды. В сравнении с атмосферой, круговорот в океаносфере происходит гораздо медленнее время полного перемешивания воды оценивается примерно в 1600 лет. [c.25]

    По составу минеральных компонентов океанические воды очень однородны. В открытых частях океанов массовое содержание солей в среднем составляет 34,7 %о (в интервале от 32,0 до 37,5 %о). Наивысшая соленость наблюдается в тропических широтах, характеризующихся наиболее высоким уровнем испарения. Между основными химическими элементами морской воды существует довольно строгая связь, выражающаяся законом Дитмара (1884) в воде открытых районов океана соотношения между главными компонентами основного солевого состава постоянны и не зависят от их абсолютных концентраций. [c.26]

    Второй цикл также не полностью замкнут, поскольку в океанах постоянно происходит осаждение и захоронение углерода в донных осадках в составе карбонатов. По некоторым оценкам скорость накопления углерода в этой форме составляет 0,1 Гт С/год. Из табл. 2.1 видно, что в водах океанов содержится около 1000 Гг органического углерода. Это количество превышает запас углерода в биомассе континентов и близко к его содержанию в гумусе почв. Рассеянное во всей толще океанических вод органическое вещество иногда называют водным гумусом. Важно, что он, как гумус почв и рассеянное органическое вещество горных пород (кероген), недоступен для ассимиляции микроорганизмам. Правда, причины этой недоступности различны. Геополимеры - компоненты почвенного гумуса и кероген - устойчивы по отношению к биохимическому разложению в силу их химического строения (см. раздел 1.4). Напротив, водный гумус образован легко разрушаемыми соединениями - углеводами, аминокислотами и жирными кислотами. Однако их концентрации в морской воде ниже концентрации, соответствующей половине максимальной скорости роста микроорганизмов (примерно 10 мг/л). Это делает невыгодным использование микроорганизмами водного гумуса, и он становится огромным резервуаром углерода (Г. А. Заварзин, 1984). [c.54]

    Выделение биогенных элементов в отдельную группу до некоторой степени условно, поскольку множество других элементов также необходимо для нормального функционирования организмов. Содержание их колеблется в очень широких пределах от следов, часто не улавливаемых существующими методами определения, до единиц и десятков миллифаммов на 1 л. В наименьших количествах в природных водах встречается фосфор, содержание которого редко превышает 0,5 мг/л. Наибольшие уровни концентрации характерны для кремния, они достигают иногда 15 мг/л. Азот и железо занимают промежуточное положение, причем в морских и океанических водах они содержатся в меньших количествах, чем в речных. [c.134]

    Содержание микроэлементов в природных водах обычно невысоко в пределах от единиц до десятков, реже сотен микрофаммов на 1 л, а содержание многих микроэлементов часто недоступно определению обычными химическими или физико-химическими методами. Особенно это характерно для морских и океанических вод. [c.137]

    Самым распространенным загрязняющим веществом гидросферы является нефть и нефтепродукты. Если учесть, что в Мировой океан и поверхностные воды суши ежегодно привносится 15—17 млн,т нефти и нефтепродуктов, а 1 т нефти покрывает тонкой пленкой акваторию средней площадью 12 км то потенциально 150—180 млакм поверхности Мирового океана каждый год покрывается нефтяной пленкой. Эта оценка условна, так как не учитывает скорости разложения отдельных компонентов нефти, ее способности коагулировать, сбиваясь комками, но, тем не менее, многими исследователями отмечено, что нефтяные пятна на поверхности океанических вод между Европой и Северной Америкой уже смыкаются. [c.167]

    Одни только дейтериевые циклы представляют неисчерпаемые источники энергии. Действительно, энергия дейтерия, содержащегося в 1 л воды, эквивалентна 300 л бензина, а на Земле 14-10 л воды. По современным оценкам содержащиеся в морской и океанической водах запасы дейтерия эквивалентны 10 т нефти. Для сравнения следует отметить, что мировое потребление энергетических ресурсов в 1980 г. составило 6-10 т нефти. Ученые считают, что дейтерий-тритиевый цикл, в котором тритий получается из лития, будет лежать в основе первых коммерческих реакторов. Он имеет самую низкую рабочую температуру и в 100 раз большую скорость реакции по сравнению с конкурирующими видами ядерных топлив. Тем не менее в перспективе три-тиевое топливо может рассматриваться лишь как промежуточная ступень. Главная цель — создание реактора, работающего на чисто дейтериевом или протоновом топливе, и тoчни <и которого в мире неисчерпаемы. Это позволит свести к минимуму радиоактивность и избежать сложного процесса получения трития. По мере того как исчерпываются наиболее доступные источники энергии, возникает потребность в передаче энергии к месту потребления на дальние и сверхдальние расстояния. Примером может служить сооружение гигантского газопровода, призванного транспортировать природный газ из Восточной Сибири в Западную Европу, и строительство высоковольтных линий электропередач, связывающих крупнейшие гидроэлектростанции нашей страны с промышленными регионами. [c.81]

    Концентрации кремнезема 0,0002 % достигались при по-гру кении в разбавленный солевой раствор слюды и каолина, при растворении монтмориллонита они составляли до 0,0015 % [36]. Когда морская вода обогащалась растворимым кремнеземом до 0,0025 %, то при отсутствии подобных минералов в воде концентрация сохранялась на одном уровне в течение года. Однако при введении в раствор минералов кремнезем удалялся из раствора и концентрация падала до уровня 0,0002—0,0015 °/о, т. е. до концентрации, получаемой при растворении минералов. Так как океанические воды, как показали многочисленные измерения, содержат 0,0002—0,0010 % 5102, то весьма вероятно, что это значение представляет собой равновесную растворимость коллоидного алюмосиликата в суспензии. Экспериментально доказано, что чистый аморфный кремнезем, растворенный в воде, дает концентрацию 0,0100—0,011 7о монокремневой кислоты, однако в присутствии многозарядных катионов металлов (железа, алюминия и др.) образуются коллоидные силикаты со значительно более низкой концентрацией монокремневой кислоты. Айлер [37] показал, что добавка катиона алюминия снижает растворимость аморфного кремнезема приблизительно от 0,0110 до менее чем 0,0010 %  [c.25]

    К факторам, контролирующим распределение морских илов, частично относится доступность питательных веществ, которьк должно быть достаточно для поддержания жизни значительных популяций фитопланктона (см. п. 3.7.4). Однако более важным является растворение СаСОз по мере осаждения частичек в глубинные океанические воды. В глубинных водах океанов, осо- [c.176]

    Гидротермальные реакции с участием сульфатов и калия. Влияние гидротермальных реакций на запасы океанических 80 и К еще более сложно. Сера в виде сульфида водорода (НгВ) или Н8- была обнаружена в гидротермальных флюидах, и известно, что осаждение 80 [ангидрит (Са804)[ происходит как в коре из нисходящей просачивающейся морской воды, так и на участках гидротермальных выходов. Судьба СаЗОд в коре неизвестна, тогда как СаЗОд на выходах, по-видимому, вновь растворяется в глубинных океанических водах и мало влияет на общие запасы 564 . Ранние оценки крупномасштабного выноса 80 на срединных океанических хребтах, основанные на данных по Галапагосу, вероятно, неточны и существенно дисбалансируют в противном случае удовлетворительные резервуары. Хорошо известно, что НгЗ осаждается из гидротермальных флюидов в виде сульфидов железа, но общий вынос по этому механизму, скорее всего, невелик, поскольку в геологическом временнбм масштабе 80 , поступающие с речным потоком, достаточно хорошо удаляются в результате образования эвапоритов и осадочных сульфидов. [c.189]


Смотреть страницы где упоминается термин Океанические воды: [c.144]    [c.147]    [c.147]    [c.148]    [c.13]    [c.23]    [c.31]    [c.207]   
Химия окружающей среды (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Загрязняющие вещества в океанических водах

Массоперенос в окружающей среде в океанические воды

Океаническая и морская вода. Таблица 20. Элементарный химический состав морской и океанической воды

Океанические воды диффузия загрязнений, модел

Океанические воды механизм загрязнения

Океанические воды перенос

Океанические воды превращение нефти

Океанические воды профили насыщения

Океанические воды течения

Состав океанической и пресной воды

Течения океанические влияние на свойства воды

Химический состав океанической воды



© 2024 chem21.info Реклама на сайте