Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы массообмена

    Во 2-й части учебника изложены теоретические основы массообменных процессов химической технологии (абсорбция, адсорбция, кристаллизация, сушка, экстракция и др.). Рассмотрены устройство и принцип действия аппаратов для их проведения. Показаны методы расчета типовых процессов и аппаратов. В каждой главе приведены вопросы для самоконтроля студентов. [c.2]

    В заключение раздела об основах массообменных процессов полезно обратить внимание на то обстоятельство, что понятия о ступени изменения концентрации (теоретической тарелке) и об эффективности работы реальной тарелки (КПД по Мерфи) базируются на предположении о полном перемешивании обеих фаз или хотя бы одной только жидкой фазы. Именно при выполнении такого условия графическая интерпретация понятия теоретической тарелки соответствует прямоугольной ступеньке между рабочей линией процесса и равновесной кривой, а значение эффективности реальной тарелки не может превысить единицу. [c.385]


    ГЛАВА 13. ОСНОВЫ МАССООБМЕННЫХ ПРОЦЕССОВ [c.152]

    По отдельным главам внесены следующие изменения. В главу Основы гидравлики добавлен пример на определение кривой отклика и коэффициента продольного перемешивания. Значительно переработана глава Теплопередача в химической аппаратуре . В нее включены новые данные по теплоотдаче, добавлен пример по нестационарной теплопроводности, приведены новые примеры расчета теплообменников. Разработана новая глава Основы массо-передачи , в которой даны примеры и задачи по теоретическим основам массообменных процессов, включая пример на продольное перемешивание в насадочной колонне. Внесены некоторые изменения и в другие разделы. [c.3]

    В основу классификации совмещенных реакционно-массообменных процессов может быть положен признак характера процесса массообмена. Наиболее часто встречающиеся в органическом синтезе совмещенные процессы представлены здесь в алфавитном порядке с указанием литературных источников, откуда взяты конкретные примеры таки процессов  [c.187]

    Конкретные случаи совмещенных реакционно-массообменных процессов настолько разнообразны, что описание отдельных особенностей процессов заняло бы много места, однако иа основе уже рассмотренных модельных примеров (см. стр. 200) можно показать несколько принципиальных дополнительных возможностей таких процессов по сравнению с раздельно проводимыми химическими реакциями и последующими процессами разделения образующихся смесей, а также показать (правда, почти самоочевидные) общие необходимые условия осуществления совмещения. [c.190]

    В термодинамической теории массообменных процессов разделения при переходе от составов фаз в одном межтарелочном отделении к составам фаз в соседнем за количественную основу принимается гипотеза теоретической тарелки ступени). Особенность этой теории состоит в том, что она не занимается вопросом о механизме процесса и не исследует диффузионной природы и кинетической картины явления массопередачи на контактной ступени. Теория массообменных процессов разделения, основанная на концепции теоретической тарелки (ступени), изучает предельные условия проведения процесса и устанавливает эталоны, сравнением с которыми можно получить правильное суждение [c.122]

    Связь между локальной эффективностью практической тарелки и определяюш ими переменными процесса, от которых зависит массопередача, устанавливается на основе уподобления взаимодействия контактирующих на тарелке фаз массообмену в насадочной колонне. [c.210]


    Предусматривается наращивать выпуск прогрессивного реакторного тепло- и массообменного, криогенного, вакуумного, холодильного оборудования на основе новых технологических процессов. [c.18]

    Для исследования продольного перемешивания s экстракционных колоннах с отстойниками на основе рециркуляционной модели структуры потока используется [43] схема модели по рис. IV-21. Здесь рабочая часть колонны объемом Vp представляет каскад из п последовательных ячеек полного перемешивания с транзитным потоком V и рециркуляционным потоком между ячейками ш. Для учета влияния на кривые отклика отстойной зоны она представляется в виде ячейки объемом Уот со средней концентрацией трассера Сот. Между отстойной зоной и последней, л-й, ячейкой рабочей части колонны происходит массообмен за счет конвективных потоков жидкости (Ост. [c.139]

    Массообмен при встречном движении фаз на основе рециркуляционной модели продольного перемешивания [c.209]

    Массообмен при встречной движении фаз на основе ячеечной модели продольного перемешивания [c.221]

    Гильденблат И. А., Родионов А. И., Демченко Б. И.. Теор. основы хим. технол.. 6, 10 (1972). Влияние коэффициента диффузии на массообмен между потоками жидкости и газом (в ячейках с мешалками и колоннах с орошаемой стенкой при различных физических свойствах жидкостей). [c.269]

    Водные дисперсные системы и увлажненные пористые тела составляют значительную часть материалов и продуктов естественного и искусственного происхождения, с которыми имеет дело техника и химическая технология. К ним относятся, например, адсорбенты и катализаторы, полимерные, строительные и конструкционные материалы, горные породы, почвы и грунты, биологические системы, пищевые, текстильные и сельскохозяйственные продукты. Физико-химические и механические свойства этих дисперсных систем зависят от содержания и свойств удерживаемой ими влаги. Кинетика массообменных процессов, составляющих основу многих технологий, определяется подвижностью и энергией связи влаги с твердой фазой. [c.4]

    При турбулентной диффузии вычисление коэффициента теплопроводности связано с трудностями, на которые обратили внимание Арго и Смит . Уравнение для расчета этой величины получено на основе исследований Бернарда и Вильгельма (изучался массообмен в слое, состоящем из цилиндров диаметром 9,5 мм). Для других случаев необходимы дальнейшие исследования при новых значениях критерия Пекле. Вычисления следует проводить для средних по всему сечению массовой скорости и порозности. [c.65]

    Явление диффузии лежит в основе всех процессов, связанных с переносом и обменом массы вещества. В частности, массообменные процессы в топливохранилищах и самолетных баках нельзя рассчитывать без данных о коэффициенте диффузии. В то же время экспериментальные данные по этому показателю имеются для весьма ограниченного ассортимента топлив [ЬО, 77—79]. Из реактивных топлив значения коэффициента диффузии паров определены только для топлива Т-1 [79]. [c.66]

    Опытные данные по массообмену при одностороннем селективном отсосе в условиях концентрационной неустойчивости представлены на рис. 4.19. Для сравнения на рис. 4.20 показано отношение чисел Шервуда для процессов с устойчивым и неустойчивым распределением плотности. Видно, что оба процесса имеют одинаковый характер до Ra = Ra затем происходит сильная интенсификация массообмена. Разброс опытных значений Sh в области смешанно-конвективного течения велик среднестатистические значения Sh, показанные сплошными линиями, послужили основой для обобщения в форме Ч д = = Ч (Rev, Gz, Ra ). [c.146]

    Массообмен в напорном и дренажном каналах определяется конвекцией и диффузией. Структура потоков в этих каналах может приближаться к предельным моделям идеального вытеснения или смешения чаще же она представляет более сложную модель, учитывающую влияние продольного и поперечного перемешивания. Массоперенос в мембране определяется типом мембраны (см. гл. 1) и может быть только диффузионным или же диффузионным и фазовым одновременно, как в пористых мембранах и пористой основе асимметричных мембран. [c.157]

    Рабочую высоту насадочных ректификационных колонн определяют методами, применяемыми для массообменных аппаратов с непрерывным контактом фаз [уравнения (III.32) и (III.33)1. Число тарелок в тарельчатых колоннах находят либо с помощью средней эффективности тарелки [уравнение (III.43) ], либо с помощью кинетической кривой, строящейся на основе эффективности тарелок по Мэрфри. Для определения средней эффективности колпачковых тарелок широко используют эмпирическую зависимость, график которой построен на рис. III. 14. Здесь на оси абсцисс отложено произведение средней вязкости жидкой фазы в колонне (в мПа-с) на относительную летучесть  [c.63]

    При выборе типа насадок для массообменных аппаратов руководствуются рядом соображений (см. гл. VI, раздел 1.3 там же приведены основные характеристики различных насадок). Наиболее правильно выбор оптимального типа и размера насадки может быть осуществлен на основе технико-экономического анализа общих затрат на разделение в конкретном технологическом процессе. [c.126]


    При однородном псевдоожижении массообмен между слоем и стенкой может быть наилучшим образом описан на основе модели слоя с беспорядочно расположенными каналами. Одну сторону каналов образует сама стенка, другие стороны составляют смежные частицы, создающие контуры неправильной формы. Примем, что скорость в канале пропорциональна скорости в просветах между частицами слоя и и что гидравлический диаметр этого канала пропорционален среднему гидравлическому диаметру просветов между частицами я- Тогда можно рассматривать стенку как сторону канала, составленную из инородных частиц, и ожидать, что выражение для коэффициента массообмена будет подобно используемому для переноса от газа (жидкости) к твердой частице в неподвижном зернистом слое  [c.378]

    Алгоритм расчета многокомпонентного равновесия также можно причислить к алгоритмам преобразования данных. В настоящее время многокомпонентное равновесие рассчитывается обычно на основе бинарных равновесных данных, при этом накладываются очень жесткие ограничения на время расчета, поскольку по специфике проектирования массообменных процессов расчет межфазного равновесия является одним из наиболее интенсивно используемых алгоритмов. В связи с этим следует отметить работы [38, 39 , в которых предложены методы расчета многокомпонентного равновесия, значительно экономящие время. [c.230]

    Последовательность расчета оборудования ректификационной колонны показана на рис. 2.13. В основу расчета конструктивных параметров колонны и тарелок положены известные соотношения, используемые при проектных расчетах массообменного оборудования [66, 67, 68]. [c.150]

    Для технологических операторов ХТС с распределенными параметрами, к которым относятся аппараты, где протекают противо-точные массообменные процессы, нахождение элементов матриц, преобразования практически сводится к свертке зонной ячеечной математической модели по пространственной координате и ее линеаризации в некотором диапазоне изменения параметров вектора входных потоков. Подобная свертка математической модели применяется также в тех случаях, когда химико-технологические нро-цессы рассчитывают на основе средних движущих сил или равновесных зависимостей. [c.89]

    Проанализирована структура основных соотношений, описывающих движение многофазной многокомпонентной сплошной среды, которые могут служить исходным материалом при решении многих задач синтеза функциональных операторов ФХС. В частности, на основе представлений о взаимопроникающих континуумах сформулированы уравнения механики многокомпонентной двухфазной сжимаемой дисперсной смеси, в которой протекают процессы тепло- и массопереноса совместно с химическими реакциями. Проанализированы энергетические переходы при тепло- и массообмене между фазами. Вскрыты особенности механики двухфазных многокомпонентных смесей, связанные с не-идеальностью фаз. Рассмотрены вопросы учета равновесных характеристик и многокомпонентных смесей в уравнениях движения таких сред. [c.77]

    При написании книги автор использовал в основном американские источники труды конференций по подготовке газа, издаваемые ежегодно университетом штата Оклахома, журналы, книги, отчеты. Изложение материала логично и последовательно. В гл. 1 представлена обобщенная схема переработки газов с разбивкой ее на отдельные модули, что удобно для проектирования и анализа процессов. Главы 2—5 посвящены анализу поведения углеводородных систем. В гл. 6 рассматриваются спецификации на продукцию процессов переработки. Глава 7 посвящена проектированию и составлению спецификаций на аппаратуру и оборудование. В гл. S—11 излагаются физические основы процессов переработки тепло- и массообмен. [c.5]

    При проектировании установок сжижения определяются условия процесса и поверхность, которая обеспечивала бы массообмен между фазами за определенный отрезок времени. В основу расчета положены законы фазового состояния и однократного испарения, материальный и энергетический балансы, анализ процесса массообмена. [c.13]

    Этот метод и следует взять за основу при автоматизированном конструировании барботажных тарелок массообменных аппаратов. [c.106]

    В качестве головного и кубового продуктов можно отбирать и смеси различных компонентов, как показано на рис. 86 для колонны I. В дистилляте получают фракцию С4—Се, а в кубе — фракцию С,—Сд следовательно, граница раздела смеси лежит между компонентами и С,. В этом случае прежде всего выбирают кривые равновесия для крайних пар компонентов, т. е. для С4—С, и С,—Са, и рассчитывают число теоретических ступеней разделения и другие условия ректификации, необходимые для обогащения смеси до % = 95% (мол.) при непрерывном режиме работы колонны. Для двух полученных чисел ступеней вычисляют среднее значение. За основу можно взять также кривую равновесия для смеси Се—С,, поскольку количественно фракция С4—Сд преобладает, а компонент Сд почти не участвует в массообмене. [c.134]

    Перегонка с ректификацией дает более высокую четкость разделения смесей по сравнению с перегонкой с дефлегмацией. Основой процесса ректификации является многократный двусторонний массообмен между движущимися противотоком парами и жидкостью перегоняемой смеси. Этот процесс осуществляют в ректификационных колоннах. Для обеспечения более тесного соприкосновения между встречными потоками пара и жидкости ректификационные колонны оборудованы контактными устройствами — тарелками или насадкой. От числа таких контактов и от количества флегмы (орошения), стекающей навстречу парам, в основном зависит четкость разделения компонентов смеси. [c.67]

    Прежде чем приступить к гидравлическому расчету массообменного аппарата, необходимо выбрать конструкцию внутреннего массообменного контактного устройства. Такой выбор должен проводиться с учетом требований и особенностей конкретного процесса разделения на основе единственного объективного критерия — минимума приведенных затрат. В результате гидравлического расчета определяются геометрические размеры (О и Я), а также гидравлическое сопротивление массообменного аппарата. В зависимости от конструкции контактного устройства гидравлический расчет проводится по соответствующей утвержденной методике. [c.326]

    Важным этапом расчета массообменных аппаратов является определение коэффициента полезного действия контактного устройства, так как от к. п. д. зависит число реальных ступеней контакта, а следовательно, и уровень капитальных и эксплуатационных затрат. К. п. д. зависит от многих параметров — гидродинамических, конструктивных, физико-химических. Наиболее достоверными можно считать экспериментальные данные, полученные в сопоставимых условиях на опытно-промышленных установках, а также данные обследования промышленных аппаратов и созданные на их основе корреляции.. [c.326]

    Разработку системы хронопрострапственных метрик сайта технологических процессов целесообразно осуществить на базе общепринятой классификации химико-технологических процессов. В основу этой классификации положена общность кинетических закономерностей, целенаправленность и способы осуществления процессов [269, 399]. В рамках этой классификации все процессы разбиты на пять классов гидромеханические, тепловые, массообменные механо-технологические, химические. Воздействие акустических колебаний на отдельные процессы этих классов может иметь разную степень результативности. В энциклопедии [429] отмечаются следующие уровни воздействия стимулирующие (акустическое воздействие является движущей силой процесса, например, акустическое диспергирование) интенсифицирующие (воздействие выступает как фактор, ускоряющий течение процесса, например, массообмен в акустическом поле) оптимизирующие (акустические колебания упорядочивают течение процесса, например, акустическое гранулирование). В табл. 4.1. приведена систематизация ГА-процессов, согласованная с общепринятой клас- [c.148]

    Жидкости и газы, насыщающие нефтегазоконденсатные пласты, представляют собой смеси углеводородных, а также неуглеводородных компонентов, некоторые из которых способны растворяться в углеводородных смесях. При определенных режимах разработки нефтяных и нефтегазоконденсатных месторождений в пласте возникает многофазное течение сложной многокомпонентной смеси, при котором между движущимися с различными скоростями фазами осуществляется интенсивный массообмен. Переход отдельных компонентов из одной фазы в другую влечет за собой изменение составов и физических свойств фильтрующихся фаз. Такие процессы происходят, например, при движении газированной нефти и вытеснении ее водой или газом, при разработке месторождений сложного комйонентногс ( ава (в частности, с большим содержанием неуглеводородных компонентов), при вытеснении нефти оторочками активной примеси (полимерными, щелочными и мицеллярными растворами различными жидкими и газообразными растворителями). Основой для расчета таких процессов служит теория многофазной многокомпонентной фильтрации, интенсивно развивающаяся в последние годы. Вместе с тем заметим, что область ее применения шире, чем здесь указано, и эта теория имеет важное общенаучное значение. [c.252]

    Массообмен при встречном движении фаз на основе диффузионной модели продольного перемепшвания  [c.216]

    Принимаемые допущения относительно гидродинамики потоков в массообменных элементах обусловлены теми моделями структуры, которые используются в данной модели. К наиболее распространенным моделям относятся смешение, вытеснение и диффузионная. Часто оказывается удобнее вместо диффузионной использовать ячеечную исходя из простоты ее машинной реализации. На основе указанных можно использовать любую их комбинацию, получая комбинированные модели, которые позволяют более полно отразить реальную структуру потоков, а именно зоны смешения, вытеснения, байпасирования, каналообразова-ния и т. д. Принятие той или иной модели имеет целью внесение поправки на оценку эффективности контакта фаз. Наиболее распространенные модели тарельчатых аппаратов и формулы для определения матриц коэффициентов эффективности приведены в гл. 4. [c.317]

    Изменение давления иногда сопровождается изменением физико-химических свойств разделяемой смеси, а также гидродинамики потоков жидкости и пара. Например, ири ректификации в кольцевом зазоре между вращающимся внутренним цилиндром и неподвижным внешним цилиндром применение вакуума приводит к ослаблению интенсивности или полному исчезновению вихрей Тейлора в паровой фазе, благоприятствующих массоиереносу. Затухание вихрей Тейлора происходит вследствие повышения кинематической вязкости паров. В итоге эффективность колонны заметно снижается (см. Шафрановский А. В., Ручинский В. Р. Теор. основы хим. технол. 1971, т. V, № 1 Олевский В. М., Ручинский В. Р. Роторно-пленочные тепло- и массообменные аппараты. М.. Химия, 1977. — Прим. ред. [c.84]

    Абсорбция и десорбция — массообменные процессы, составляющие основу абсорбционного разделения нефтяных и природных газов. Абсорбционный метод разделения углеводородных газов применяется в промышленности для извлечения газового бензина и жидких газов (пролан-бутановая смесь). [c.83]


Библиография для Основы массообмена: [c.483]    [c.206]    [c.138]   
Смотреть страницы где упоминается термин Основы массообмена: [c.67]    [c.206]    [c.56]   
Смотреть главы в:

Расчеты по процессам и аппаратам химической технологии -> Основы массообмена




ПОИСК





Смотрите так же термины и статьи:

Массообмен



© 2025 chem21.info Реклама на сайте