Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции полимеров Общая характеристика химических реакций полимеров

    Общая характеристика химических реакций полимеров [c.215]

    Таким образом, в общем случае внутренний теплосъем за счет кипения компонентов реакционной смеси является достаточно эффективным способом термостатирования химических реакций. Ограничение температуры реакционной смеси в процессе быстрой полимеризации в жидкой фазе за счет кипения части мономера или растворителя по-разному влияет на протекание реакции в зависимости от радиуса реакционной зоны К. В области малых радиусов (К<К р), когда формируется плоский фронт реакции и температура в зоне реакции относительно равномерно распределена по радиусу реакционной зоны К, ход процесса и молекулярно-массовые характеристики образующегося полимера в определенном интервале температур перестают зависеть от исходной температуры сырья (рис. 3.27) [2Г. [c.163]


    Предлагаемая вниманию читателя книга обобщает и систематизирует реакции образования полимеров под действием анионных, катионных и ионно-координационных инициаторов. В ней освещена специфика органических реакций ионного типа в химическом и кинетическом отношениях, дана электронная характеристика различных ионных агентов и мономеров, рассмотрены общие и частные закономерности образования макромолекул при полимеризации ненасыщенных ж гетероциклических соединений, затронуты особенности радиационной ионной полимеризации. Некоторое внимание уделено технологии важнейших процессов синтеза полимеров в ионных системах. [c.3]

    Твердофазная полимеризация пока не имеет единой классической теории. Экспериментальные данные позволяют предсказать механизм реакции, влияние физико-химических характеристик твердого тела на кинетику полимеризации и структуру полимера, однако для каждого мономера или, в лучшем случае, группы иономеров, объединенной общими признаками строения и кристаллографических параметров, эти вопросы пока решаются в отдельности и разнообразными методами. [c.54]

    В случае химической неоднородности типа Б для характеристики соединения уже недостаточно указать среднюю длину последовательности звеньев одного сорта. Можно полагать, что в процессе синтеза подобного образца некоторые кинетические закономерности обусловливают различие длин таких последовательностей в начале стадии роста цепей и в конце стадии (осаждение полимера, молекулярный вес которого превысил определенную величину, и т. д.). В итоге в процессе реакции меняются условия образования этих различных последовательностей звеньев одного типа и становится необходимым указывать распределение по длинам таких последовательностей в макромолекулах для каждой фракции. Типы В и Г химической неоднородности обусловлены возникновением структурных изомеров. Последние могут появляться как в макромолекулах, состояш их из одинаковых мономерных звеньев (тин В), так и в макромолекулах, содержащих различные мономерные звенья (тип Г). В общем случае такие изомеры распределяются статистически, так что нельзя говорить о химической неоднородности в строгом смысле. Однако известны случаи нестатистического распределения изомеров (см. колонку 3 табл. 12-1). Одновременное образование нециклических и циклических структур в процессе полимеризации мономера (например, диаллилового эфира) можно было бы рассматривать как процесс сополимеризации. Этот случай выделен здесь, поскольку исходное вещество представлено только одним мономером. [c.294]


    Исследование характера изменения термомеханических характеристик полимеров различной природы в результате действия на них излучения позволило установить некоторые общие закономерности радиационнохимических превращений высокомолекулярных соединений и, в частности, найти факторы, влияющие на направление и скорость изменения их молекулярной структуры. В принципе под действием ионизирующих излучений должны расщепляться химические связи как в главных цепях макромолекул, так и в боковых группах поэтому одновременно могут протекать как реакции, приводящие к снижению средней длины полимерных цепей, так и реакции, приводящие к образованию поперечных связей между макромолекулами. Характер наблюдаемого суммарного процесса зависит от того, какие реакции преобладают. В соответствии с этим исследованные полимеры были разбиты на две группы (1950 г. [191]). [c.365]

    Общей особенностью процессов полигетероциклизации является зависимость кинетики и энергетических параметров от жесткости полимерной цепи [7]. Она проявляется тем отчетливее, чем более высокую жесткость имеют макромолекулы конечного циклизованного полимера. При полициклизации ряда полимеров зафиксировано наличие по крайней мере двух стадий с различными величинами энергии активации. При этом завершающие стадии характеризуются более высокими значениями этого параметра. Так, например, энергия активации имидизации полиамидокислоты на основе пиромеллитового диангидрида и 4,4 -диамииодифенилового эфира возрастает по мере протекания реакции от 95 до 125 кДж/моль [6, с. 45]. Одновременно возрастает пред-экспоненциальный множитель. Непосредственным результатом описанной выше зависимости кинетики процесса от гибкости молекулярной цепи является трудность достижения полной завершенности реакции полициклизации. В большинстве случаев степень циклизации не превышает 95—98%. Практически это приводит к тому, что конечные полимеры имеют дефектную химическую структуру, являясь, по выражению В. В. Коршака разнозвенными , что неблагоприятно отражается на их термических характеристиках. [c.57]

    Полициклизация в растворе лишена многих недостатков, присущих твердофазным способам. Из общих соображений для гомогенной полициклизации можно ожидать повышения скоростей и степени завершенности реакции отпадает необходимость учета фазового состояния полимера нет опасности разрушения волокна и т. д. Препятствием к применению этого способа служит низкая растворимость полигетероариленов с циклами в цепи. Для повышения растворимости полимеров с гетероциклами можно прибегнуть либо к их химической модификации, либо к подбору сильнодействующих растворителей. Первый путь пока представляется менее перспективным из-за значительного снижения термических характеристик полимера. Практическое применение получила полициклизация в серной кислоте, олеуме и полифосфорной кислоте. Физическая характеристика этих растворителей приведена выше. В последние годы в лабораторной практике стали применять кислоты Льюиса и растворители сульфонового типа. Растворяющая способность серной и полифосфорной кислот связана с протонированием гетероатомов и ароматических ядер кислот Льюиса — с возникновением координационных связей между этими кислотами и гетероатомами и ароматическими ядрами полимера [62]. Наряду с высоким растворяющим действием эти соединения являются сильными дегидратирующими агентами, что собственно и определяет их применимость в качестве реакционной среды для полициклодегидратации. Помимо этого ПФК обладает и каталитическим действием [63]. Считают, что она образует соль с диаминами, способствует повышению реакционной способности электро-фильного углеродного атома карбонильной группы. Показано присутствие фосфора в цепи полимера. Комплекс ПФК с амином находится в равновесии со свободным амином [c.58]

    В главе II охарактеризованы исходные химические продукты (мономеры), используел ые в главах III, IV. Кроме того, дана характеристика мономеров, широко применяемых в органическом высокополимерном синтезе. Для каждого мономера приведены основные физико-химические свойства, способы получения и основные реакции качественного и количественного анализа. Общие свойства мономеров изучаются студентами в курсе органической химии. В данном практикуме основное внимание должно быть обращено на изучение качественных и количественных реакций мономеров, позволяющих обнаружить и определить количественно мономер в мономере, мономер в полимере, мономер в смеси с другими органическими веществами. Особое внимание должно быть обращено на изучение мономеров, получаемых из продуктов нефтехимического крекинга (этилен, пропилен и др.), позволяющих получать новые высокополимеры. [c.69]


    При многократном нагружении полимеры в конце концов разрушаются. Однако в этом случае температура влияет не только на прочность, но и на внутреннее трение и, следовательно, на долю механической энергии, преобразуемую в тепло и идущую на активацию химических реакций. Развитие химических реакций сопровождается увеличением неоднородности материала, числа и опасности микродефектов. Поэтому влияние температуры на динамическое утомление не может быть описано общими зависимостями характеристик прочности от температуры, справедливыми для пластиков и эластомеров в условиях, исключающих возможность протекания химических реакций. [c.158]

    История исспедований химических превращений эластомеров при термическом воздействии насчитывает бопее 100 пет. Первые работы в этом направлении позволили установить строение природных высокомолекулярных соединений. Впоследствии основное внимание исследователей было сконцентрировано на изучении высокотемпературных характеристик термостойких эластомеров. На современном этапе в связи с широким распространением методов термического анализа значительно повысился интерес к химии процессов, протекающих при нагревании нетеплостойких карбоцепных эластомеров. И здесь были обнаружены существенные особенности диеновых эластомеров с системой 1,5-кратных связей, особенности, представляющие интерес с Т( жи зрения теории процессов термического старения полимеров. Именно эти особенности послужили основой настоящей главы. В целом проблемы химических превращений эластомеров при термическом Еюэдействии тесно переплетаются с общими проблемами химии и физики полимеров, такими как проблемы стабилизации эластомеров с использованием эффектов клетки и чужих звеньев конформационные эффекты при деструкции эластомеров ступенчатая кинетика термического распада эластомеров проблемы возмущающего действия тепла хишческой реакции на кинетику пиролитического процесса критические явления при термической деструкции и др. [c.5]


Смотреть главы в:

Химия и физика полимеров -> Химические реакции полимеров Общая характеристика химических реакций полимеров




ПОИСК





Смотрите так же термины и статьи:

Общая характеристика химических реакций

Полимеры химическая

Реакции общие

Реакции полимеров

Характеристики реакции



© 2025 chem21.info Реклама на сайте