Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводниковые материалы и их свойства

    Сначала расплавляют узкую зону, совпадающую с левым концом стержня. Так как эта зона слева не контактирует с твердой фазой, то концентрация примеси в ней остается равной Со. Незначительное передвижение нагревателя в правую сторону приведет к кристаллизации металла слева от нагревателя и перемещению расплавленной зоны в правую сторону. В первой порции затвердевшего металла концентрация примеси составит С == Со, и, так как L < 1, она будет меньше исходной. Дальнейшее перемещение расплавленной зоны приводит к увеличению концентрации примеси в л<идкости и накоплению примеси в правом конце стержня. Многократное прохождение зоны вдоль стержня приводит к глубокой очистке металла и достижению особых свойств. Примером может служить очистка германия, используемого в качестве полупроводникового материала. Присутствие в этом металле ничтожных количеств меди, железа, никеля резко изменяет его проводимость и делает непригодным для применения в радиотехнических устройствах. Очистка зонной плавкой снижает содержание указанных элементов до концентрации, меньшей, чем одни атом примеси на I i атомов германия. [c.101]


    Терморезистор [1] — нелинейный полупроводниковый резистор, сопротивление которого сильно зависит от температуры. Терморезисторы выполняются из полупроводникового материала сложного состава с температурным коэффициентом до 6% на 1 К. Для работы в СВЧ-диапазоне применяют измерительные терморезцсторы (термисторы), позволяющие проводить измерения мощности от долей микроватта до нескольких милливатт. Параметры некоторых измерительных терморезисторов даны в табл. 4.3. Свойства терморезистора описывают две характеристики температурная к(Т)— зависимость сопротивления от температуры и вольт-амперная 11(1), Поскольку СВЧ-энергия в терморезисторе преобразуется в тепло- [c.121]

    Широко известна роль химии поверхности и адсорбции при поглощении отравляющих веществ и в гетерогенном катализе. С химией поверхности связана коррозия, приводящая к огромным потерям материалов и авариям и требующая создания устойчивых защитных покрытий. Химическое модифицирование поверхностей природных и искусственных материалов, наполнителей полимеров, формующих устройств для изделий из полимеров, строительных материалов, в частности полимерных, может придать этим поверхностям совершенно новые свойства. Например, химическая прививка к поверхности гидрофильного материала углеводородных групп делает эту поверхность устойчиво гидрофобной. Химия поверхности полупроводниковых материалов и изделий для микроэлектроники играет важную роль в современных электронных приборах. Химическое модифицирование поверхности используется и в этих случаях. [c.5]

    Основные показатели качества полупроводникового материала зависят от концентрации легирующих примесей в материале. Легирование осуществляется введением в расплав соответствующих, примесей, которые в процессе роста поступают в кристалл. Для получения материала с однородными свойствами необходимо, чтобы процесс поступления примесей в кристалл подчинялся определенным требованиям, реализация которых является важной задачей технологии полупроводниковых материалов. [c.70]

    За последние годы в нашей стране и за рубежом расширяются работы по созданию монокристаллов алмаза, родственных ему материалов (алмазоподобных углеродных пленок, поликристаллов и композитов) и изучению свойств этих материалов с целью использования в нетрадиционных для алмаза областях техники. К настоящему же времени по сути дела такие практически важные свойства алмаза, как стойкость к агрессивным средам, теплопроводность, а также возможность изготовления на его основе широкозонного полупроводникового материала, еще не нашли применения в технике. [c.449]


    Заданы тепловая нагрузка на термобатарею, т. е. холодо- или теплопроизводительность, температуры охлаждаемой и нагреваемой сред (объектов), термические сопротивления между спаями и окружающими средами и высота термоэлементов. Кроме того, известны физические свойства полупроводникового материала. Не- [c.70]

    Полупроводники. Полупроводник представляет собой твердый материал, обладающий промежуточными свойствами между металлическими <проводниками, с одной стороны, и непроводящими изоляторами — с другой. Полупроводниковые материалы характеризуются относительно большим отрицательным температурным коэффициентом сопротивления, тогда как для металлов этот коэффициент положителен. По этому признаку различаются эти два типа проводников. Наиболее широкое применение находят такие полупроводниковые материалы, как селен, германий, кремний, а также различные окиси металлов и сульфиды. Если тонкую пластинку из полупроводникового материала поместить между металлическими электродами и измерить ее сопротивление при пропускании то ка в прямом и обратном направлениях, то окажется, что величина одного сопротивления на несколько порядков превышает величину другого. [c.294]

    На примере серого олова — одной из модификаций элемента № 50 — была выявлена связь между свойствами и химической природой полупроводникового материала. И это, видимо, единственное, за что серое олово можно помянуть добрым словом вреда оно принесло больше, чем пользы. Мы еще вернемся к этой разновидности элемента № 50 после рассказа о еще одной большой и важной группе соединений олова. [c.46]

    В этих выпрямителях специально обработанный слой полупроводникового материала помещают между двумя металлическими обкладками. В полупроводнике создается тонкий слой, обладающий запирающими свойствами, т. е. способный пропускать ток только в одном направлении. Поэтому при пропускании переменного тока через такую полупроводниковую систему получают пульсирующий постоянный ток. К полупроводниковым выпрямителям относятся широко распространенный купроксный выпрямитель, в котором в качестве полупроводникового материала применяется закись меди. [c.328]

    Изученные фотоэлектрические, оптические, электрические, люминесцентные свойства 10283 характеризуют монокристаллы полуторного сульфида индия как перспективный полупроводниковый материал с большой долей ионной составляющей связи. [c.232]

    Величина порогового напряжения 7ов зависит от свойств полупроводникового материала, на основе, которого выполнен диод величина сопротивления диода — от площади р—п-перехода, омического сопротивления базы и контактов. В качестве примера в табл. 2 приведены значения Оов и Яв для диодов типа ВК2-200. [c.32]

    Химические свойства. При термоэлектрическом преобразовании в зависимости от применяемого типа полупроводникового материала температура тепловой капсулы в современных ИИТ лежит в диапазоне от 300 до 1000° С. [c.489]

    Как известно [3], термоэлектрические свойства материала определяются величиной термоЭДС, электропроводности и теплопроводности. Так называемый фактор добротности полупроводникового материала, по которому оценивается эффективность данного материала для применения в термоэлектрических устройствах, определяется по формуле [c.249]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]


    Главными потребителями германия в настоящее время являются радиотехническая и электротехническая промышленность, где он используется как полупроводник. Основные преимущества германия перед другими полупроводниками заключаются, во-первых, в возможности сравнительно несложного получения его в виде полупроводникового материала с заданными свойствами (легкость химической и физической очистки от большинства примесей) и, во-вторых, в благоприятных электрофизических параметрах. Вследствие этого германий является одним из наиболее ценных материалов в современной полупроводниковой технике. [c.382]

    Полупроводником называют твердое вещество, промежуточное по свойствам между металлическими проводниками, с одной стороны, и непроводниками (изоляторами)—с другой. Он характеризуется относительно высоким отрицательным температурным коэффициентом сопротивления, в то время как для металлов этот коэффициент положителен, что позволяет легко различать два типа проводников. В подавляющем большинстве случаев в качестве полупроводникового материала используется элементарный кремний. Германий используется вместо кремния только в особых случаях. [c.552]

    Пленки для интегральных микросхем наносят либо на пассивную подложку из фотоситалла или стекла, либо на активную подложку из полупроводникового материала. Это наиболее сложные случаи применения пленок, так как пленки используются в сложном сочетании между собой при обязательном требовании — обеспечить заданные физические свойства каждой пленки в довольно узких пределах допустимых отклонений. Пленки должны хорошо формироваться не только на поверхности подложки, но и друг на друге. Важно иметь возможность наносить пленки заданного рисунка с высокой точностью, при которой отклонения размеров часто не превышают нескольких десятков микрон. [c.38]

    Развитие этих отраслей промышленности, науки и народного хозяйства страны потребовало от аналитической химии новых совершенных методов анализа. Потребовались количественные определения содержания примесей на уровне 10 ...10 % и ниже. Оказалось, например, что содержание так называемых запрещенных примесей (Сс1, РЬ и др.) в материалах ракетной техники должно быть не выше 10 %, содержание гафния в цирконии, используемом в качестве конструкционного материала в атомной технике, должно быть меньше 0,01%, а в материалах полупроводниковой техники примеси должны составлять не более 10 "%. Известно, что полупроводниковые свойства германия обнаружились только после того, как были получены образцы этого элемента высокой степени чистоты. Цирконий был вначале забракован в качестве конструкционного материала в атомной промышленности на том основании, что сам быстро становился радиоактивным, хотя по теоретическим расчетам этого не должно было быть. Позднее выяснилось, что радиоактивным становился не цирконий, а обычный спутник циркония — гафний. В настоящее время цирконий научились получать без примеси гафния, и он эффективно используется в атомной промышленности. [c.12]

    Все сказанное выше подчеркивает необходимость специальной очистки и обработки поверхности полупроводникового материала для обеспечения стабильности параметров микросхемы и длительного срока ее службы. Технические приемы очистки поверхности (травление, промывка в воде и в органических веществах — см, гл. I) не позволяют получить истинно чистую поверхность. Однако такая поверхность и нежелательна, так как она характеризуется ненасыщенными связями, имеет резко выраженную проводимость р-типа из-за акцепторных свойств атомов на поверхности полупроводника, поэтому будет иметь место шунтирующее действие низкоомного поверхностного слоя р-типа независимо от типа проводимости объема полупроводника. [c.180]

    Растворение основного полупроводникового материала, обладающего заданными электрофизическими свойствами, в некотором заданном объеме расплавленного металла или сплава с последующей его кристаллизацией при понижении температуры [c.304]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    В обоих случаях процесс кристаллизации осуществляют, чтобы получить полупроводниковый материал с новыми электрофизическими свойствами. [c.305]

    Окисные катализаторы часто являются полупроводниками. При этом возникает иная проблема примесей. Отравление в этих случаях может быть связано с образованием новых состояний поверхности или заполнением существующих. Кроме того, часто предполагали, но никогда не удавалось продемонстрировать, что имеется тесная связь мея ду полупроводниковыми свойствами и каталитической активностью таких материалов, присутствие примесей в основе которых может быть важным, поскольку изменяет тип проводимости полупроводника хорошо известными способами. Однако ни в одном из экспериментов, проведенных на этих системах, не было показано, что изменение содержания примесей в основе влияет на каталитическую активность полупроводникового материала. [c.51]

    Кроме физико-химических свойств ректифицируемых продуктов существеняы также их экономическая доступность и возможность включения в общую технологическую схему получения данного металла или полупроводникового материала. Желательно также, чтобы продукты обладали минимальным коррозионным воздействием на аппаратуру,незначительной токсичностью и невоопламеняемостью. [c.64]

    Пайку чаще всего осуществляют соединениями, которые содержат элементы IV группы периодической системы Менделеева. Олово и свинец являются электрически активными примесями - акцепторами. С течением времени они диффундируют в термоэлектрический материал и ухудшают его свойства. Поэтому всегда встает задача уменьшения диффузии припоя в полупроводниковый материал ветви термоэлемента. Для этого между припоем и термоэлектрическим материалом располагают различные так называемые антидиффузионные прослойки (или покрыгия), которые препятствуют диффузии химических элементов из припоя или из материала шин в полупроводник. [c.86]

    В работе [97] получены значения коэффициента преломления тонкими слоями и спектральная характеристика фототока. Изучены смещение последней при повышении температуры и другие свойства GaTe, что позволило характеризовать его как интересный полупроводниковый материал, который всегда имеет проводимость р-тина с малой подвижностью дырок. [c.72]

    Тетрагональные кристаллы ХпгЗз, легированные различными донорными и акцепторными примесями, обладают исключительно высокими фотоэлектрическими свойствами [31. Авторы работ [39,40[изучали фотопроводимость, край полосы поглощения, коэффициент отражения и диэлектрическую постоянную, термо-э.д.с., люминесценцию, спектры возбуждения и испускания монокристаллов -InjSg ими были получены данные, характеризующие эти кристаллы как интересный полупроводниковый материал с большой долей ионной составляющей связи. [c.94]

    Эпитаксиальная технология позволяет наращивать монокристаллические слои кремния, практически любой толщины на монокристаллические подлонски того же либо другого полупроводникового, изолирующего или металлического материала. Как отмечалось в гл. V, условия, которые необходимо обеспечить для получения монокристаллических пленок с высоко совершенной структурой и с контролируемыми свойствами, пока не могут быть сформулированы в общем виде с учетом кристаллографических, кристаллохимических, химических и физических факторов. Поэтому разработка технологии каждого процесса и его применение по созданию новой системы подложка — эпитаксиальная пленка полупроводникового материала требуют кропотливых исследований. [c.428]

    В последние годы резко возрос интерес исследователей к двуокиси олова II—5]. Это обусловлено малой изученностью ее электрофизических свойств и возможностью использования 8пОг как полупроводникового материала при высоких температурах без защитной атмосферы. [c.299]

    Тонкие пленки, которые приобрели большое значение в новых приборах и схемах, получают из газовой фазы различными способами, включая напыление, выпаривание и химическое осаждение. Когда эпитаксиальные пленки полупроводников получают химическим осаждением из газовой фазы, требуется обычный контроль чистоты полупроводникового материала при содернх аниях примесей порядка 10 —10" %. Пленки тантала [461, применяемые в качестве элементов сопротивлений или анодов для конденсаторов в интегрирующих схемах, обычно получают напылением при этом наблюдали изменения свойств пленок, когда малые количества активных газов, таких, как азот, метан или кислород, присутствовали в аргоне (в атмосфере которого проводили напыление), причем эти изменения обусловлены [c.51]

    Кристаллы SijN бесцветны, проявляют полупроводниковые свойства (Д = 3,9 эВ). Нитрид кремния используют в качестве химически стойкого и огнеупорного материала, в создании коррозионностойких и тугоплавких сплавов, в качестве высокотемпературного полупроводника. [c.420]

    Абсолютно чистое вещество можно представить себе только теоретически. В практике чистым называют вещество, содержащее примеси ниже онределеиного предела. Этот предел, как правило, составляет доли процента н менее. Интерес к чистым веществам обусловлен потребностями современной науки и техники в материалах с особыми механическими, электрическими, полупроводниковыми, оптическими и другими физико-химическими свойствами. Особенно возросли требования к чистоте технических материалов с развитием атомной энергетики, полупроводниковой электро- н радиотехники, лазерной техники. Например, минимальная примесь может вызвать остановку ядерного реактора. В полупроводниковых материалах ничтожные следы посторонних примесей меняют величину и тип проводимости, а в отдельных случаях вообще лишают материал его полупроводниковых свойств. Получить особо чистое вещество — чрезвычайно сложная и важная технологическая задача, решенная пока для немногих веществ. Проверить чистоту вещества можно по его химическому составу и по физическим свойствам. [c.78]


Смотреть страницы где упоминается термин Полупроводниковые материалы и их свойства: [c.364]    [c.217]    [c.55]    [c.110]    [c.140]    [c.55]    [c.174]    [c.9]    [c.266]    [c.149]    [c.164]   
Смотреть главы в:

Химия -> Полупроводниковые материалы и их свойства

Химия -> Полупроводниковые материалы и их свойства

Химия -> Полупроводниковые материалы и их свойства




ПОИСК





Смотрите так же термины и статьи:

МЕТОДЫ ИЗГОТОВЛЕНИЯ И СВОЙСТВА НЕКОТОРЫХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ Полупроводниковые материалы IV группы

Материя свойства

Полупроводниковые материалы

Полупроводниковые свойства

Приготовление полупроводниковых материалов и изучение их свойств Выпрямительные свойства полупроводников



© 2025 chem21.info Реклама на сайте