Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование кокса для производства карбидов

    Делаются попытки усовершенствовать производство карбида кальция, однако это связано с большим расходом электроэнергии и сырья, высокими капиталовложениями и себестоимостью кроме того, подобные установки технологически трудноуправляемы. Было предложено, например, для получения необходимого тепла сжигать (в присутствии кислорода) часть кокса для уменьшения расхода электроэнергии. При этом образуется много окиси углерода, использование которой в процессе также может снизить себестоимость ацетилена. В настоящее время, однако, большую часть ацетилена получают старым методом (из карбида кальция). Карбид кальция обладает тем преимуществом, что из него получается ацетилен 97— 98%-ной концентрации, поэтому дальнейшая его очистка очень проста его легко транспортировать. Ацетилен же, полученный из ме-. тана (и других углеводородов), требует трудоемкой операции выделения его из газовых смесей и транспортирования в резервуарах под давлением. Критерием выбора конкретного процесса получения ацетилена из метана (или его гомологов) служат его основные характеристики (термодинамика, кинетика, механизм реакции). [c.99]


    Производство карбида кальция термической реакцией между коксом и окисью кальция имеет широкое распространение. Так, в 1965 г. для этих целей потреблялось более 2 500 ООО т кокса во всем мире, из которых, вероятно, от 800 до 900 тыс. т в странах Западной Европы. Но не следует ожидать развития производства карбида кальция в ближайшие годы. Основной областью его применения является производство ацетилена, себестоимость которого по этому методу оценивается во Франции немногим больше 1000 франков/т. Во многих случаях ацетилен может быть заменен этиленом, который более экономичен. Кроме того, для производства ацетилена с карбидным процессом конкурируют другие процессы, принцип которых — пиролиз таких углеводородов, как метан, этап и легкие бензины. Этот пиролиз может происходить при внешнем обогреве, частичном сгорании или под действием электрического тока в форме дуги или разряда. Эти процессы обычно дают смеси ацетилена и этилена, пригодные для использования. Нельзя сказать, что эти процессы были хорошо отработаны и надежны к 1967 г., но можно надеяться, что многие из них позволят получать ацетилен с ценой менее 0,80 франков/кг в связи с этим будет ограничена замена его на этилен. [c.221]

    Продукты коксования и их использование. Кокс представляет собой твердый матово-черный, пористый продукт. Из тонны сухой шихты получают 650—750 кг кокса. Он используется главным образом в металлургии, а также для газификации, производства карбида кальция, электродов, как реагент и топливо в ряде отраслей химической промышленности. Широкое применение кокса в металлургии определяет основные предъявляемые к нему требования. Кокс должен обладать достаточной механической прочностью, так как в противном случае ои будет разрушаться в металлургических печах под давлением столба шихты, что увеличит сопротивление движению газов, приведет к расстройству работы доменной печи, снижению ее производительности и т. п. Кокс должен иметь теплотворную способность 31 400—33 500 кДж/кг. Показателями качества кокса является горючесть и реакционная способность. Первый показатель характеризует скорость горения кокса, второй — скорость восстановления им диоксида углерода. Поскольку [c.38]

    Если выход летучих выше 9,0—10,0%, использование кокса затруднено, а в некоторых отраслях промышленности невозмол<но. Так, в условиях высоких температур (600—700 °С) в момент выделения максимального количества смолоподобных продуктов происходит спекание кокса с образованием коксовых пирогов , затрудняющих нормальный ход технологического процесса. Кроме того, сгорание большого количества летучих приводит к резкому повышению температуры отходящих газов и вызывает необходимость в установке громоздких сооружений для утилизации тепла дымовых газов. Из-за низкой механической прочности кокса, обусловленной высоким выходом летучих, происходит сильное дробление его и образование мелких фракций при складировании и транспортировании к потребителям. При употреблении такого кокса ухудшаются санитарно-гигиенические условия в прокалочных отделениях, а также в цехах, где производят карбид кальция, ферросплавы и др. Однако па некоторых производствах (при использовании кокса в качестве восстановителя) большое количество летучих и содержащегося в них водорода является весьма желательным. [c.142]


    ИСПОЛЬЗОВАНИЕ КОКСА ДЛЯ ПРОИЗВОДСТВА КАРБИДОВ [c.160]

    Промышленные опыты, проведенные Гипрокаучуком на базе сернистого нефтяного кокса замедленного коксования, показали принципиальную возможность и целесообразность использования этого вида углеродистого вещества в смеси с металлургическим коксом (в соотношении 1 1) для производства карбида кальция. [c.162]

    Образующаяся в процессе производства карбида окись углерода отсасывается из печи и после обеспыливания в скрубберах Тейзена может быть использована, например, в качестве топливного газа (теплотворная способность 2000—2200 ккал). В газе содержится всего около 65% СО и 10—15% водорода и азота. Часть водорода образуется непосредственно из кокса или антрацита, часть—из воды, содержащейся в шихте (реакция получения водяного газа). При работе на антраците получается также небольшое количество метана. Для использования в химических синтезах концентрация СО в газе недостаточно велика. [c.181]

    Лучшим углеродистым материалом для производства карбида кальция является нефтяной кокс, образующийся при глубоком крекинге тяжелых нефтяных остатков. Нефтяной кокс является малозольным материалом (не более 0,8%) и содержит незначительное количество влаги и других примесей. В США на ряде карбидных заводов используется нефтяной кокс. При работе на нефтяном коксе удается осуществить непрерывный слив карбидного плава и улучшить показатели работы печей. В качестве углеродистого материала используется также коксовый орешек , который на 40% дешевле, чем металлургический кокс. Довольно эффективным способом снижения энергоемкости карбидного производства может явиться использование мелкого кокса и кокса с большим электрическим сопротивлением, так как при этом уменьшается электрическое сопротивление ванны печи. [c.53]

    На действующих мощных карбидных заводах большую часть карбида кальция перерабатывают на ацетилен. Предложено получающуюся при этом в качестве отхода Са(0Н)2 (так называемую пушонку) после дегидратации и брикетирования использовать вместо извести. Опыт показал, что переходящие в пушонку из углеродистых материалов примеси при многократном использовании накапливаются в ней и делают ее неприменимой в производстве карбида кальция. Поэтому при существующем качестве кокса возможно использовать не более 30% пушонки в смеси с известью 117]. Строительство двух технологических линий подготовки известкового сырья — обжига известняка и обжига и брикетирования пушонки — экономически нецелесообразно. Более выгодно применять пушонку как строительный материал. Но в этом случае необходим строгий контроль за содержанием ацетилена в пушонке, поскольку выделение ацетилена при перевозках и переработке ее может привести к взрывам. [c.43]

    Продукты коксования и их использование. Кокс представляет собой твердый матово-черный, пористый продукт. Из тонны сухой шихты получают 650—750 кг кокса. Он используется главным образом в металлургии, а также для газификации, производства карбида кальция, электродов как реагент и топливо в ряде отраслей химической промышленности. Широкое применение кокса в металлургии определяет основные предъявляемые к нему требования. Кокс должен обладать достаточной механической прочностью, так как в противном случае он будет разрушаться в металлургических печах под давлением столба шихты, что увеличит сопротивление движению газов, расстройству хода доменной печи, снижению ее производительности и т. п. Кокс должен иметь теплотворную способность 31 400—33 500 кДж/кг. Показателями качества кокса является горючесть и реакционная способность. Первый показатель характеризует скорость горения кокса, второй — скорость восстановления им двуокиси углерода. Поскольку эти процессы гетерогенные, скорость их определяется не только составом кокса, но и его пористостью, так как от нее зависит поверхность контакта взаимодействующих фаз. Качество кокса также характеризуется содержанием [c.150]

    Желательно использовать кокс не в качестве топлива, а для специальных целей, например, при производстве угольных электродов для алюминиевой промышленности, при производстве карбида кальция, фосфора и сероуглерода. Для некоторых из этих применений кокс необходимо подвергать обессериванию и, возможно, прокаливанию. В этом направлении проводятся исследовательские работы. Изучается также возможность брикетирования кокса для применения в случаях, когда использование пыли невозможно. [c.138]

    Потребность в нефтяном коксе, как более дешевом и высококачественном материале, чем кокс, получаемый на основе угля (так называемый пековый), весьма значительна и непрерывно возрастает. Основной потребитель нефтяного кокса - алюминиевая промышленность кокс служит восстановителем (анодная масса) при выплавке алюминия из алюминиевых руд. Удельный расход кокса на производство алюминия весьма значителен и составляет 550-600 кг на 1 т алюминия. Из других областей применения нефтяного кокса следует назвать использование его в качестве сырья для изготовления графитированных электродов для сталеплавильных печей, для получения карбидов (кальция, кремния) и сероуглерода. Специальные сорта нефтяного кокса применяют как конструкционный материал для изготовления химической аппаратуры, работающей в условиях агрессивных сред. [c.43]


    Решение задач математического моделирования я оптимизации на этой основе процессов облагораживания [4] требует знания кинетических закономерностей процесса реагирования кокса с различными окислителями, установления значений кинетических констант протекающих в нем реакций при различных температурах термообработки коксов. Знание кинетических закономерностей реагирования нефтяных коксов с активными дымовыми газами позволяет, кроме того, наметить квалифицированные пути использования последних в различных областях производства, предъявляющих неодинаковые требования к их химической активности. Так, когда нефтяные коксы используются как химический реагент и интенсивность процесса обусловливается скоростью процесса реагирования углерода с другими компонентами реакции (производство ферросплавов, фосфора, сероуглерода, синтез-газов, карбидов металлов, активированного углерода и др.), они должны обладать высокой реакционной способностью. При шахтной плавке окисленных руд цветных металлов, для производства анодной массы и графитированных изделий, в процессах облагораживания и в [c.4]

    Вследствие этого заслуживает всестороннего рассмотрения возможность использования нефтяного кокса в качестве источника углерода для производства нефтехимических продуктов [15]. Так, из нефтяного кокса можно получать карбид кальция для производства нефтехимического ацетилена. [c.21]

    Ацетилен стал доступен в конце XIX в., после того как был получен в промышленных условиях карбид кальция, явившийся сырьем для производства ацетилена. Использование дешевого природного газа и продуктов переработки нефти стало новым мощным стимулом для получения ацетилена и последующего развития на его основе крупной промышленности органического синтеза. Предпочтительное и пользование методов получения ацетилена из углеводородов или карбидного метода зависит главным образом от наличия в данном районе страны нефтяного сырья, природного газа или кокса и энергетических ресурсов. Из новых способов получения ацетилена чаще применяются окислительный пиролиз природного газа, электрокрекинг углеводородов и пиролиз нефтяных фракций в потоке высокотемпературных газов, образующихся в кислородной горелке. [c.9]

    Вследствие легкости окисления альдегидов дальнейшее превращение в уксусную кислоту не представляет существенных затруднений. Другой необходимой предпосылкой для возникновения этого производства явилась разработка в 90-х годах XIX в. технического способа получения из кокса и извести карбида кальция, из которого легко при действии воды образуется ацетилен. Таким образом, синтез уксусной кислоты включает в себя четыре стадии а) получение карбида кальция, б) получение из карбида ацетилена и очистка его от примесей, в) получение уксусного альдегида (реакция Кучерова), г) получение уксусной кислоты он является ярким примером синтеза органического соединения, исходя из углерода и неорганических веществ — извести, воды и кислорода с использованием солей ртути и марганца. [c.272]

    Вследствие легкости окисления альдегидов дальнейшее превращение в уксусную кислоту не представляет существенных затруднений. Другой необходимой предпосылкой для возникновения этого производства явилась разработка в 90-х годах XIX в. способа получения из кокса и извести карбида кальция, из которого легко при действии воды образуется ацетилен. Этот синтез является ярким примером синтеза органического соединения, исходя из углерода и неорганических веществ — извести, воды и кислорода с использованием солей металлов. [c.242]

    Кокс. О коксе полезно сказать несколько слов. Большая часть кокса, который выпускается нефтеперерабатывающим заводом, выглядит как губка и потому называется губчатый кокс. Основные области применения такого кокса — это производство электродов, получение карбида кальция и графита. Прочность губчатого кокса недостаточна для его использования в доменных печах для выплавки чугуна или в литейном производстве. [c.104]

    Промышленные опыты, проведенные Гипрокаучуком на основе сернистого кокса замедленного коксования, показали принципиальную возможность и целесообразность использования для производства карбида кальция этого вида углеродистого вещества в смеси с металлургическим коксом (в соотношении 1 1). При содержании в шихте до 50 вес. % сернистого нефтяного кокса (3,9 вес. % серы) количество HjS в карбиде кальция не превышает норм ГОСТ. Удельный расход электроэнергии при этом меньше на 3,0% (на условный карбид кальция ), чем в случае работы печи полностью на металлургическом коксе. Кроме того, резко снижается зольность карбида кальция. Однако большое содержание в коксе летучих (более 8,0 вес. %) и мелочи размером менее 3—4 мм приводит к снижению эффективности работы печи и ухудшению aHHTapHbix условий при ее обслуживании. [c.31]

    На рис. 74 приведена схема трехфазной рудпотерми-ческой печи. РуднотершГчесМе печи применяются для производства различных сплавов, в частности ферросплавов из окисленных руд с использованием в качестве восстановителя углерода (кокса). Подобные печп применяются и для производства карбидов различных металлов. Вся зона технологического процесса заполнена псходны- ми материалами, находящимися в сыпучем состоянии, и продуктами процесса, находящимися в жидком или твердом состоянии. Жидкие продукты (сплав и шлак) периодически или непрерывно выпускаются. [c.237]

    Производство карбида кальция. В середине 60-х годов производство карбида кальция на основе угля (кокса) и известняка достигало 10 млн. т/год. Это объясняется тем, что ацетилен, получаемый при взаимодействии карбида кальция с водой, широко применялся в сварочной технике и в химической промышленности для производства этанола, уксусной кислоты и уксусного ангидрида, ацетальдегида, ацетона, цианамида кальция, винилхлорида и других продуктов органического синтеза. В 1974 г. производство карбида кальция снизилось до 3 млн. т/год в связи с расширением использования для указанных производств этилена, получаемого из дешевого нефтяного сырья. В настоящее время вновь рассматривается вопрос о производстве ацетилена, который может быть получен путем взаимодействия угля с известняком при 2000—2200 °С [16, с. 76], газификации угля и пиролиза образующегося при этом метана, гидрирования угля с последующей конверсией гидро-генизата в ацетилен в плазменном или дуговом реакторах, а также путем вдувания потоком водорода угольной пыли в электродуговой реактор с быстрой закалкой выделяющихся газов [50], На основании теоретических разработок и усовершенствования аргонового и аргоноводородного плазменных реакторов максимальный выход ацетилена составляет 59 г/(кВт- ч), степень превращения углерода в С2Н2 достигает 14% [51]. [c.22]

    Сланцевый кокс, подвергнутый графитизации при более высоких температурах, чем пефтшюй, обладает высоким содержанием кальция и может быть непосредственно использован для пропзводства карбида кальция [42] для производства 1 кг карбида литражом 316 л/кг расходуется 4,824 кг сланцевого кокса, а расход электроэнергии на 1 т готового карбида в этом случае составляет 3350 квт-ч. Однако полученный карбид отличается высоким содержанием серы и дает ацетилен, загрязненный 0,3% НтЗ (если к сланцевому коксу добавляют дополнительное количество окисп кальция, она фиксирует летучую серу и содержание H2S повышается до 0,55%). [c.201]

    В условиях планового социалистического хозяйства имеется возможность принимать решения, которые на много лет вперед предопределяют технический и экономический уровень производства. Именно поэтому столь большое внимание в последние годы уделяется перспективному планированию и прогнозированию. Рост масштабов общественного производства, усложнение его структуры, научно-техническая революция и связанная с ней организация новых производств в последние десятилетия все более настоятельно диктуют необходимость экономического прогнозирования. Имеющиеся производственные мощности, рассчитанные на эксплуатацию в течение 25—30 лет, и планируемый ввод новых предприятий в черной металлургии позволяют сделать вывод о том, что в период до 2000 т. доменный процесс останется основным способом производства первичного металла. Расчеты показывают, что потребность в каменноугольном коксе будет возрастать в этот период почти в прямой зависимости от увеличения масштабов производства чугуна. Это связано с тем, что, несмотря на снижение удельного расхода топлива в доменном процессе, значительно возрастает использование кокса и коксовой мелочи в качестве углеродистого в-осстановителя и твердого топлива в ряде других производств агломерационном, электродном, в ферросплавной промышленности, в цветной металлургии, при получении фосфора, карбида кальция, соды и некоторых других химических продуктов. [c.194]

    Помимо использования в качестве восстановителя в металлургии [173], нефтяной кокс применяют в производстве углеродных щеток, кремнекарбидных абразивов и конструкционных материалов (трубы, кольца Рашига) и т. д. Значительное количество нефтяного кокса превращают в карбид кальция, а затем в ацетилен [c.570]

    Мы не рассматриваем здесь перспективы развития таких методов химического использования угля или полученного из него кокса, как производство ацетилена через карбид кальция или многочисленные процессы газификации твердого топлива с целью получения окиси углерода и водорода и осуществления синтезов на их основе (синтез аммиака, метанола, получение жидкого горючего по методу Фишера-Тропша, оксосиитез, т. е. каталитический процесс непосредственного присоединения под давлением окиои углерода и водорода к олефинам с целью получения спиртов, альдегидов, кислот и пр.). Хотя названные процессы получили широкое промышленное распространение и в настоящее время в ряде стран ведутся исследования с целью улучшения экономических показателей этих производств [55], однако для условий нашей страны, при возможности более дешевого получения тех же продуктов через нефть и природный газ, указанные направления химического использования угля могут иметь, в лучшем случае, лишь подчиненное значение. [c.65]


Смотреть страницы где упоминается термин Использование кокса для производства карбидов: [c.102]    [c.333]    [c.201]    [c.26]    [c.95]    [c.99]   
Смотреть главы в:

Производство, облагораживание и применение нефтяного кокса -> Использование кокса для производства карбидов

Облагораживание и применение нефтяного кокса -> Использование кокса для производства карбидов




ПОИСК





Смотрите так же термины и статьи:

Кокс Сох

Кокс, для производства карбида

Коксо газ



© 2025 chem21.info Реклама на сайте