Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая коррозия и способы защиты от нее

Рис. 19-12. Один из способов защиты от коррозии железных предметов заключается в нанесении на их поверхность воздухонепроницаемого покрытия из краски или другого металла, например олова. Такое покрытие выполняет свою функцию до тех пор, пока оно совершенно не повреждено, но достаточно небольшой царапины, чтобы начался процесс коррозии. Цинковое покрытие создает дополнительную электрохимическую защиту от Рис. 19-12. Один из <a href="/info/333679">способов защиты</a> от <a href="/info/641773">коррозии железных</a> предметов заключается в нанесении на их поверхность воздухонепроницаемого покрытия из краски или <a href="/info/118284">другого металла</a>, например олова. Такое покрытие выполняет свою функцию до тех пор, пока оно совершенно не повреждено, но достаточно небольшой царапины, чтобы <a href="/info/326668">начался процесс</a> коррозии. <a href="/info/59013">Цинковое покрытие</a> создает дополнительную электрохимическую защиту от

    В чем сущность электрохимической коррозии Охарактеризуйте способы защиты металлов от коррозии. [c.328]

    Защита от коррозии. Электрохимические способы защиты протекторная, катодная, электродренаж. [c.227]

    В настоящее время хорошо разработаны и широко применяются различные способы защиты металлов от коррозии с учетом характера металла и условий его эксплуатации. Наиболее эффективны против коррозии почвенной, под действием агрессивных химических сред и морской воды электрохимические способы защиты (катодная и протекторная). В обоих способах защита от коррозии достигается тем, что защищаемая конструкция оказывается катодным участком электрохимической системы. [c.227]

    Этот способ защиты металлов называется протекторным, а присоединенный к металлу анодный электрод — протектором. Материалом для изготовления протектора для защиты изделий из железа и стали чаще всего служит цинк. Электрохимическая защита при помощи протекторов применяется при коррозии металлов, находящихся в растворах электролитов. Радиус действия протектора, т. е. расстояние, на которое распространяется защитное действие протектора, тем больше, чем выше электропроводность среды, в которой находится защищаемый металл, и чем больше разность потенциалов протектора и защищаемого металла. [c.189]

    Катодная защита (разд. 19.8)-способ защиты металла от коррозии путем превращения его в катод электрохимического элемента. Роль анода должен выполнять более активный металл. [c.235]

    В зависимости от контролирующего фактора выбирают метод защиты металла от коррозии. При комплексной защите от коррозии необходимо, чтобы все методы действовали в одном направлении. Применение одновременно нескольких методов, действующих на различные контролирующие стадии электрохимической коррозии, понижает эффективность защиты. Например, если ограничение коррозии металла достигнуто методами, тормозящими анодный процесс (легированием стали хромом, добавкой окислителей или анодных ингибиторов в раствор), то нерационально одновременно применять способы, тормозящие катодный процесс (устранение катодных включений в сплаве, уменьшение аэрации раствора или добавление катодных ингибиторов). Применение методов защиты, уменьшающих термодинамическую неустойчивость системы, всегда в той, или иной степени будет способствовать понижению скорости коррозии. [c.8]


    Не связаны с большими капитальными затратами электрохимические способы защиты от коррозии резервуаров. Расходы на их внедрение не превышают [c.154]

    Одним из основных способов электрохимической защиты металлов от коррозии является катодная защита. Для этого поверхность защищаемой металлической конструкции искусственно делается катодом путем наложения отрицательного потенциала от какого либо постоянного источника тока. Объясните, на чем основан этои способ защиты металлов от коррозии. [c.148]

    При расчетах электрохимической коррозии и защиты металлов обычно производится замена реальных поверхностей рассматриваемых сооружений и коррозионных сред какими-либо упрощенными поверхностями (геометрическими моделями). Основные способы построения геометрических моделей коррозионных систем в практике инженерных расчетов основаны на выделении из рассматриваемых сложных систем более простых элементов или упрощения формы всей рассматриваемой области коррозионной среды. [c.28]

    Книга состоит из двух частей. Первая часть посвящена собственно коррозии в ней рассматриваются коррозия важнейших металлов и сплавов, коррозия оборудования электрохимических цехов, способы защиты от коррозии и коррозионная стойкость материалов описаны методы определения скорости коррозии и влияние на нее различных факторов. Вторая часть книги посвящена гальваностегии в ней рассматриваются теоретические основы электроосаждения металлов н сплавов, описаны условия и закономерности нанесения покрытий из цветных металлов. В книге даны необходимые сведения о контроле качества покрытий, а также о технике безопасности. [c.2]

    Защиту материалов от коррозионных процессов осуществляют различными способами применяют специальные ингибиторы химической и биологической коррозии, катодную и протекторную защиту- от электрохимической коррозии [c.294]

    В справочнике рассматривается преимущественно практика катодной защиты металлов, но обсуждаются также и теоретические основы и вопросы смежных дисциплин, если это необходима для более полного понимания происходящих процессов. Было признано полезным дать исторический обзор (введение), чтобы показать постепенное техническое развитие способа катодной защиты до современного уровня. В следующей главе рассмотрены необходимые теоретические основы коррозии металлов и способов защиты от нее. Представлены различные пары материал-среда, чтобы пояснить разнообразные возможности применения электрохимических способов защиты. [c.17]

    В сжатой информационной форме в виде графиков и таблиц, а также пояснений к их использованию, представлен материал об электрохимических методах катодной защиты от коррозии. Описаны методы пассивной и катодной защиты. Приведены данные о гальваническом влиянии высокого напряжения и способы коррозионных измерений, необходимые сведения об измерительной технике, о локальной катодной защите, катодной защите в морской воде и внутренней катодной защите. [c.159]

    Объясните сущность химической и электрохимической коррозии. Укажите способы защиты железа от коррозии. [c.329]

    В научном отношении процессы при катодной защите от коррозии изучены более полно, чем при других способах защиты металлов. Коррозия металлов в водных растворах или грунтах является в принципе электрохимическим процессом, управляемым электрическим напряжением-потенциалом металла в растворе электролита. При снижении потенциала в соответствии с законами электрохимии движущая сила реакции должна уменьшаться, а следовательно, должна снижаться и скорость коррозии. Все эти взаимосвязи известны уже более ста лет и катодная защита в отдельных случаях осуществлялась на практике уже весьма давно, однако применение этого процесса в промышленных масштабах существенно задержалось. Способы катодной защиты в некоторых областях представлялись слишком чужеродными , а необходимость проведения электротехнических мероприятий вынуждала отказываться от их практического применения. Практика катодной защиты и на самом деле значительно сложнее ее теоретических основ. [c.17]

    Под коррозией понимается реакция материала с окружающей его средой, вызывающая в нем ощутимые (поддающиеся измерению) изменения и способная привести к коррозионному повреждению. Такие реакции в случае металлических материалов и водных сред обычно имеют электрохимическую природу. Однако могут происходить и чисто химические реакции или только металлофизические процессы. Не каждая реакция обязательно ведет к повреждению. Это зависит от степени развития реакции и условий функционирования системы материал — среда, которую всегда следует рассматривать как единое целое. Только когда нормальное функционирование будет нарушено, можно говорить о коррозионном повреждении. Мероприятия, предотвращающие ограничение функциональной способности, являются способами защиты от коррозии [1], [c.42]


    На рис. 2.2 и 2.5 уже пояснялся принцип электрохимического способа защиты. Необходимой предпосылкой для осуществимости такого способа защиты является наличие области потенциалов, в которой коррозионные реакции либо не идут вообще, либо идут с такой скоростью, что в технике ими можно пренебречь. К сожалению, нельзя заранее утверждать, что при любом виде электрохимической коррозии такая область обязательно будет существовать, поскольку области потенциалов для различных видов коррозии накладываются одна на другую и к тому же теоретические области защитного потенциала иногда вообще не могут установиться вследствие протекания побочных мешающих реакций. [c.62]

    ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ И СПОСОБЫ ЗАЩИТЫ ОТ НЕЕ [c.71]

    Защитные мероприятия делятся на активные и пассивные. Электрохимическая защита представляет собой важную и обширную часть защитных мероприятий, характеризующихся активным вмешательством в процессы коррозии. Пассивные защитные мероприятия заключаются в разъединении защищаемой поверхности и агрессивной коррозионной среды при помощи покрытия. Любые возможные активные и пассивные защитные мероприятия могут проводиться и отдельно, однако сочетание обоих способов защиты дает ряд преимуществ и в некоторых случаях даже настоятельно необходимо. Катодная защита и нанесение покрытий почти идеально дополняют друг друга. Это обусловливается, во-первых, экономическими причинами в принципе можно активно защищать и сооружения без покрытий, но затраты на защитную установку и эксплуатационные расходы при этом будут бесспорно высокими, так как потребуется большой катодный защитный ток. Кроме того, в случае подземных трубопроводов имеются и технические соображения, по которым катодная защита поверхностей без покрытия нежелательна. В первую очередь имеется в виду влияние на близрасположенные металлические конструкции, вызывающее опасность их коррозии. Такая опасность может оказаться весьма значительной, и предотвратить ее техническими средствами либо вообще невозможно, либо очень трудно. [c.145]

    Что называется электрохимической коррозией Какие способы защиты от нее вам известны  [c.246]

    Из многочисленных способов защиты, пожалуй, наиболее важны методы, повышающие торможение анодного процесса или, другими словами, методы, способствующие поддержанию коррозионных систем в устойчивом пассивном состоянии. К этим методам защиты относятся создание большинства коррозионноустойчивых сплавов, как, например, нержавеющих сталей, применение широкого класса анодных ингибиторов и пассиваторов (как в виде добавок в коррозионные среды, так и в защитные полимерные пленки, или смазки). В последнее время методы защиты путем анодного торможения коррозионного процесса дополнились принципиально новыми предложениями катодным легированием сплавов и применением анодной поляризации внешним током или использованием катодных протекторов. Открытие этих методов было логическим следствием большого числа глубоко продуманных систематических исследований в области кинетики электрохимических процессов коррозии. [c.10]

    Коррозионные исследования проводятся с целью получения исходных данных для выбора трассы подземных металлических сооружений, типа и способа их прокладки, типа изоляции, а также для разработки проектов защиты подземных инженерных сооружений от электрохимической коррозии. [c.161]

    Окислительно-восстановительные реакции играют важную роль в природе и технике, в частности, в процессах дыхания, гниения, горения они лежат в основе всех способов получения металлов из руд, всех электрохимических процессов, процессов коррозии и защиты металлов от нее, действия химических источников электроэнергии, получения целого ряда важнейших химических продуктов. [c.251]

    Широкое распространение метода катодной защиты требует надежного и простого контроля ее действенности. Анализ производственных параметров защитных установок и контроля полноты катодной защиты стальных подземных строительных конструкций по г. Горькому и области в течение ряда лет показывает, что существующие способы определения защищенности от электрохимической коррозии не могут удовлетворить запросы развивающегося производства. [c.118]

    В зависимости от вида коррозии способы антикоррозионной защиты металлов различны. Это — покрытия из более стойкого к коррозионному воздействию металла, например хромирование, никелирование и т. п., электрохимические методы — анодная и катодная защиты, электродренаж и др., защита лаками, красками и эмалями. Определенное место среди прочих видов борьбы с коррозией и использованием защитных покрытий занимают смазочные материалы. [c.318]

    Рассмотрена номенклатура металлического оборудования из коррозионно-стойких сталей и титана, неметаллических материалов. Большое внимание уделено технологии защиты стальных и железобетонных аппаратов футеровочными и полимерными покрытиями. Перспективные методы электрохимической защиты рассмотрены главным образом на примерах анодной защиты, нашедшей в химической промышленности наибольшее применение. В меньшей степени рассмотрены вопросы использования ингибиторов коррозии. Этот вид защиты неразрывно связан с особенностями технологии соответствующих производств, требованиями к химическому составу продукции н рабочих сред, поэтому он будет рассматриваться в книгах, посвященных конкретным отраслям химической промышленности. В эту книгу включены лишь справочные данные о таких общераспространенных процессах, как ингибирование при травлении металлов и ингибиторная защита оборудования в периоды консервации и транспортировки. Описанию способов защиты оборудования предпослана глава о методах коррозионных испытаний металлических и неметаллических материалов и изделий. [c.4]

    Многочисленные известные, а также все вновь появляющиеся методы защиты металлов от коррозии могут быть рассмотрены на основе характера оказываемого ими торможения на ту или иную стадию электрохимической коррозии или изменения ими степени термодинамической нестабильности системы. В этом случае в соответствии с основным выражением электрохимической коррозии (1) методы защиты металлов можно классифицировать следующим образом (см. табл. 2). В качестве способов защиты находят практическое применение как методы, базирующиеся на уменьшении степени термодинамической нестабильности, так и методы, основанные на торможении кинетики катодных и анодных процессов, и в несколько меньшей степени — методы, действие которых обусловлено увеличением общего омического сопротивления коррозионной системы. [c.10]

    Среди многих достоинств железобетона, обусловленных совмещением стали с бетоном, выделяется очень ценное качество — защита от коррозии стальной арматуры бетоном. В сухом железобетоне (например, искусственно просушенном или защищенном от влаги каким угодно способом) коррозии арматуры нет напротив, во влажном железобетоне проявляется электрохимическая коррозия. [c.257]

    Известно, что в гальванической паре разрушению от электрохимической коррозии подвергается анод. Этим обстоятельством иногда пользуются для защиты аппаратуры от коррозии. Если, например, в железный аппарат, где есть электролит, поместить цинковую пластинку, то именно она, не железная стенка аппарата, станет анодом и будет разрушаться, а железо аппарата будет со-лраняться. Если же взамен цинковой пластнши поместить никелевую, свинцовую или медную пластинку, то анодом окажется уже железо аппарата и его коррозия значительно усилится. Следовательно, подбирая гальваническую пару так, чтобы стенка аппарата была катодом, а не анодом, можно уменьшить ее электрохимическую коррозию. Такой способ защиты от коррозии называется протекторной защитой. Протекторы йзготовляют из цинка, алюминия, магния и сплавов, анодных по отношению к стали. Протекторная защита проста в эксплуатации и не требует постоянного обслуживания. [c.175]

    В конце ХУП1 в. и в первой половине XIX в. В. В. Петровым, Г. Деви, Т. Гротгусом, М. Фарадеем были проведены выдающиеся работы в области изучения электролиза и явлений в гальванических элементах. Русский академик Б. С. Якоби в 1836 г. осуществил практическое применение электролиза, разработал метод гальванопластики. Работы по дальнейшему изучению электродных процессов были продолжены немецким физико-химиком В. Нернстом и позже — советским ученым А. Н. Фрумкиным. Вместе со своими учениками А. Н. Фрумкин занимался изучением злектрокапилляр-ных и электрокинетических явлений. Его работы способствовали развитию теоретической и прикладной электрохимии. Выяснению причин электрохимической коррозии, ее механизма и разработке способов защиты металлов от разрушения посвящены работы советских ученых В. А. Кпстяковского, Г. В. Акимова, Н. Д. То-машова, Н. А. Изгарышева. [c.9]

    Данный способ защиты от подземной коррозии не примени.м для подземных металлических трубопроводов, и.меющих активную электрохимическую защиту, в связи с проявлением на катоднозащищенном трубопроводе с нарущенным изоляционным покрытием карбонатного коррозионного растрескивания. [c.39]

    Электрохимическая защита является способом противокоррозионной защиты металличес1сих материалов, основанным на снижении скорости их коррозии путем смещения потенциала до значений, соответствующих крайне низким скоростям растворения. Сущность метода состоит в уменьшении скорости электрохимической коррозии металла при поляризации электрода от источника постоянного тока или при контакте с добавочным электродом, являющимся анодом по отношению к корродирующей системе. [c.288]

    Для защиты от атмосферной коррозии и коррозии в некоторых агрессивных средах используют лакокрасочные покрытия. Широко применяют гальванические покрытия, химические осаждения защитной пленки из растворов и расплавов, напыление покрытий различными способами, гуммирование поверхности резиной. В последнее время все больщее применение получают двухслойные стали с плакирующим защитным слоем из высоколегированной стали, а также стали с защитным полимерным покрытием. Для снижения электрохимической коррозии используют катодную или анодную защиту конструкции. [c.84]

    Существуют различные способы защиты от коррозии, основанные па снижении агрессивности коррозионной среды, нанесении защитных покрытий и применении электрохимических методов — алект рахитическая защита (рис. 68). [c.235]

    В условиях коррозии в водных средах из экономических соображений обычно не применяют покрытия коррозионно-стойкими благородными металлами. Охедовательно, основная проблема, заключается в борьбе со склонностью к коррозии обычно применяемых металлов и сплавов. Имеется несколько способов защиты от коррозии в водных средах, основанных на электрохимических принципах. Другие способы основаны на очевидном приеме изоляции металла от окружающей среды. Эффективность последних зависит от химической и электрохимической стойкости защитного слоя, а также его механических свойств. [c.127]

    Различают электрохимические и неэлектрохимические способы защиты металлов от коррозии. К неэлектрохи.мическим способам относятся сплошные защитные покрытия, изолирующие металл от воздействия внешней среды — лакокрасочные, полимерные, биту.мные, эмалевые и др. Обгций недостаток этих покрытий состоит в том, что при механическом нарушении сплошности они теряют защитное действие и на металле возникают локальные очаги коррозии. [c.346]


Смотреть страницы где упоминается термин Электрохимическая коррозия и способы защиты от нее: [c.509]    [c.196]    [c.8]    [c.371]    [c.221]    [c.29]    [c.16]    [c.37]    [c.252]    [c.85]   
Смотреть главы в:

Рекуперативные теплообменные аппараты -> Электрохимическая коррозия и способы защиты от нее




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии

Коррозия электрохимическая

Электрохимическая защита

Электрохимическая защита от коррозии от коррозии



© 2025 chem21.info Реклама на сайте