Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поток при осаждении частицы

    Помимо циклонов с мокрой пленкой известны и другие конструкции мокрых центробежных пылеуловителей, которые обычно называют полыми центробежными скрубберами. Эффективность пылеулавливания у этих аппаратов выше, чем у обычных скрубберов, за счет увеличения относительной скорости капель и газа, которое достигается при использовании центробежных сил вращающегося газового потока. Осаждение частиц в центробежном скруббере происходит за счет суммарного действия двух механизмов центробежного, перемещающего частицы к стенкам аппарата, и инерционного, способствующего осаждению частиц на каплях орошающей жидкости. [c.138]


    В первом приближении соотношение скоростей потока массы частиц в полость пузыря и осаждения частиц в ожижающем агенте позволяет оценить вероятность сохранения пузырей иначе говоря, можно предсказать характер псевдоожижения (однородное или неоднородное). Скорость притока массы твердых частиц аналогична скорости перемешивания. Очевидно, достаточно-интенсивное перемешивание (подавляющее эффект осаждения) может привести к увеличению расстояний между отдельными частицами, так что большее количество газа пойдет через слой этим путем. [c.32]

    Локальные изменения порозности в системах жидкость — твердые частицы наблюдали при псевдоожижении водой и глицерином стальных, алюминиевых и пластмассовых шариков диаметром от 2,86 до 3 18 мм в колонне толщиной 3,55 мм т. е. толщина слоя в опытах практически равнялась размеру одной частицы . Такая система удобна для изучения характера потока жидкости в слое. Было установлено, что зависимость порозности от скорости согласуется с уравнением (11,9), но значение 17, должно соответствовать действительной скорости стесненного осаждения частицы [c.51]

    При определении Нт должны соблюдаться следующие ограничения при осаждении частиц диаметром 0,15 мм допустимая скорость потока через песколовку не должна превышать 0,25 м/с при температуре воды 15 °С и 0,2 м/с при температуре воды 10 °С. [c.316]

    Ряд важных усовершенствований горизонтальных отстойников был достигнут в результате исследований элементарного акта осаждения частицы. Такие исследования показали пути уменьшения вихреобразования, вызываемого плотностными придонными потоками, и длины участка осаждения (или увеличения производительности отстойника) без ухудшения его эффективности. Для интенсификации работы отстойников можно использовать следующее рассредоточенный отбор осветленной воды и отвод части придонного (плотностного) потока из зоны наибольшей концентрации в нем примесей. Последнее мероприятие позволяет повысить эффективность работы отстойника примерно на 30% при сохранении производительности (при доле отбираемого придонного потока до 15%) или значительно уменьшить его длину. Целесообразно располагать водоподводящие устройства вблизи поверхности осаждения. Эта рекомендация широко реализуется усовершенствование горизонтальных отстойников достигается установкой наклонных пластин или трубных пучков. [c.51]

    Осаждение частиц за счет соударения. Проходя через фибровую насадку сепаратора, газ обтекает волокна, изменяя направление движения, однако содержащиеся в нем частицы продолжают по инерции двигаться в прежнем направлении. В связи с этим возникает задача определить расстояние в направлении, перпендикулярном направлению газового потока, на котором произойдет соударение частиц и их отделение от газа. [c.87]


    Когда движение потока масла в отстойнике имеет ламинарный характер, линейная скорость значительно меньше скорости осаждения, и, следовательно, в отстойнике не возникают вихревые токи, действующие на оседающие частицы тогда при осаждении частиц загрязнений справедливы общие закономерности этого процес- [c.152]

    Во всех рассмотренных отстойниках непрерывного действия процесс осаждения загрязнений происходит в условиях несовпадения направления. потока масла- и осаждения частиц эти направления взаимно перпендикулярны (рис. 17, б) или образуют острый угол [c.154]

    Значительное повышение производительности в этих аппаратах обусловлено неоднородностью в камерах электрического поля. Стенки камеры ограничивают поток, а большая высота обеспечивает его ламинарность, улучшая условия осаждения частиц. [c.378]

    Метод основан на осаждении частиц пыли под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Метод малоэффективен, используется только для предварительной грубой очистки газа и вытесняется более совершенными способами газоочистки [c.230]

    Инерционное осаждение частиц имеет место и при входе запыленности газового потока в слой пены на решетке. В этом случае струи газа, сформировавшиеся в отверстиях (щелях) решеток, с относительно высокой скоростью проникают в слой жидкости, образуя при этом газовые пузыри, диаметр которых несколько больше-диаметра отверстий или ширины щелей. При набегании газовых. [c.165]

    Основная часть скруббера — сопло Вентури (2), в конфузорную часть которого подводят запыленный поток газа и через центробежные форсунки (1) — жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости (сог = 15-20 м/с) до скорости в узком сечении сопла 60-150 м/с и более. Процесс осаждения частиц пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в конфузорной части [c.296]

    Аппараты ударно-инерционного типа работают по принципу осаждения частиц пыли на поверхности жидкости при повороте на 180° пыле-газового потока, движущегося со скоростью 25-50 м/с. Взвешенные в газе частицы за счет сил инерции после выхода из сопла не успевают за линиями тока и попадают на поверхность жидкости. Хорошо улавливаются частицы размером более 20 мкм. [c.301]

    В настоящее время нельзя теоретически рассчитать коэффициент очистки, так как еще нет возможности учесть целый ряд очень важных для циклонного процесса факторов (беспорядочность вихревого движения вращающегося газового потока коагуляция частиц в процессе осаждення унос потоком газа уже осевших частиц влияние дисперсного состава ныли и ее слипаемости конфигурация и размеры твердых частиц и т. п.). Поэтому для подбора циклонов используют обобщенные опытные данные. [c.468]

    На рис. 17-23 показана схема воздушно-проходного центробежного сепаратора, работающего обычно в одном агрегате с мельницей. Измельченный материал, транспортируемый потоком воздуха, поступает из мельницы в сепаратор снизу. Затем он движется по кольцевому каналу между корпусом 1 и внутренним конусом 2 и проходит между поворотными лопатками 7 н конус 2. Воздух с мелкими взвешенными частицами отсасывается через патрубок 6. Крупные частицы отбрасываются на стенки внутреннего конуса и удаляются из него через патрубок 5. Они присоединяются к потоку крупных частиц, осажденных в кольцевом канале. По патрубку 4 крупные частицы направляются на повторное измельчение в мельницу. [c.480]

    Пакет тарелок делит поток суспензии или эмульсии в барабане сепаратора на ряд тонких слоев. При этом во много раз уменьшается путь осаждения частиц суспензии или капель эмульсии и увеличивается поверхность осаждения. В зазорах между тарелками обеспечивается ламинарный режим жидкости, т. е. исклю- [c.210]

    Многокамерный сепаратор (рис. 3.24) имеет короткий цилиндрический барабан 4 с плоскими днищем и крышкой 6, установленный на вертикальном валу 3. Вал 3 получает вращение от приводного вала 2 через повышающую червячную передачу. Для уменьшения пути осаждения частиц внутри барабана установлены вставки/в виде тонкостенных цилиндров с бортиками, образующие последовательно соединенные отдельные камеры осаждения. Отсепарированная жидкость отводится напорным диском 5. Так как средние радиусы камер не одинаковы, различаются их эффективные факторы разделения, площади проходного сечения и осевые скорости потока. В периферийных камерах они меньше, чем в центральных, поэтому в центральных камерах осаждаются крупные частицы, в периферийных — мелкие. Таким образом, многокамерные сепараторы пригодны для классификации суспензий по размерам частиц. [c.213]


    При применении реверсивных теплообменников возможен значительный унос твердых частиц азота в холодную часть теплообменника, где эти частицы в дальнейшем не могут быть испарены полностью при обратном ходе газа, что приводит к забивке теплообменника [5]. Твердые частицы легко отфильтровываются, если на клапанах холодного конца теплообменника установить фильтры. Повышение числа Рейнольдса газового потока также улучшает условия осаждения частиц. [c.56]

    При осаждении частиц в ламинарном потоке, как указано выше [c.294]

    ОСАЖДЕНИЕ ЧАСТИЦ ИЗ ТУРБУЛЕНТНОГО ПОТОКА [c.215]

    Многие исследователи [213, 274, 309, 617] показали, что скорость осаждения частиц из турбулентного потока значительно выше, чем можно было бы ожидать из оценки гравитационных, термических или электростатических сил, броуновской диффузии (см. главу VII), либо таких аэродинамических сил, как вращение частицы. Общепринятая модель осаждения частиц из турбулентного потока основана на том, что частицы переносятся к кромке пограничного слоя турбулентным потоком, и затем проскакивают через ламинарный слой. Очень маленькие частицы, не обладающие достаточной инерцией для проскока к стенке, могут быть перенесены туда броуновской диффузией. Однако вклад этого механизма в скорость осаждения весьма незначителен при осаждении смеси частиц, где лишь небольшая фракция характеризуется субмикронными размерами. [c.215]

    Значительный эффект для стекловолокна, вероятно, объясняется возникновением конденсатных мостиков, тогда как в случае полиамидных волокон их поверхность уменьшается при высокой влажности, что и было подтверждено при измерении твердости по Виккерсу [93]. Леффлер [529] проанализировал также явления срыва и увлечения частиц, установленные различными авторами, которые показали, что эти процессы происходят прн скоростях, в 3 раза больших скорости осаждения. Подобные результаты позволяют сделать вывод, что фильтры, изготовленные из мягких волокон с грубой поверхностью, могут эксплуатироваться при гораздо более высоких скоростях, чем это практикуется в настоящее время. С другой стороны, частицы в газовом потоке бомбардируют уже осажденные частицы, которые могут быть выбиты с поверхности и увлечены потоком. [c.336]

    Термическое осаждение частиц происходит в тех случаях, когда в запыленный газовый поток вносится холодное тело. Хотя явление термического осаждения известно с прошлого столетия и тридцать лет назад была разработана удовлетворительная количественная теория, объясняющая его, метод не нашел применения в промышленных газоочистительных установках. [c.514]

    На практике первый режим (режим обычного осаждения) устанавливается автоматически за устройством ввода дисперсной фазы. Для формирования в аппарате режима движения во взвешенном слое при противоточном движении фаз используют специальные устройства, приспособления или способы управления. Все они сводятся к тому, чтобы вызвать небольшое уплотнение слоя частиц или, что то же самое, уменьшить скорость их движения в месте вывода дисперсной фазы из аппарата. При движении потока твердьгх частиц в нижней части аппарата размещают сужающее устройство (диафрагму или решетку). Для капель и пузырей уплотнение потока может происходить вблизи поверхности раздела фаз. При некоторых достаточно больших расходах дисперсной 98 [c.98]

    Неравенство (2.88) означает, что концентрация дисперсной фазы при восходящем однонаправленном течении всегда должна быть больше некоторой величины, зависящей от приведенной скорости сплошной фазы. Ограничение снимается лишь при т. е, в том случае, когда приведенная скорость сплошной фазы становится больше скорости свободного осаждения частиц. При этом условие (2.88) всегда будет выполняться. Ясно, что при отсутствии устройств, ограничивающих движение частиц снизу, рассматриваем1лй режим неустойчив. Любое случайное уменьшение концентрации дисперсной фазы в нижней части аппарата ниже необходимого предела приводит к нарушению восходящего движения частиц в этой точке и переходу в режим осаждения. Сужающее устройство или решетка, скорость сплошной фазы в отверстиях которых выше скорости свободного осаждения частиц, предотвращают переход частиц в режим свободного осаждения, а тем самым поддерживают концентрацию во взвешенном слое в соответствии с неравенством (2.88). При Усо>1 необходимость в устройстве, ограничивающем поток снизу, отпадает. Такой режим обычно называют вертикальным транспортом. [c.100]

    Присутствие серного ангидрида в больших количествах ведет к суль-фатизации огарковой пыли и затрудняет электростатическую очистку обжигового газа. Верхний кипящий слой создается при условии, что скорость газового потока в отверстиях газораспределительной решетки создает динамический напор больше, чем давление кипящего слоя на площадь этих отверстий. Для образования верхнего кипящего слоя необходимо также осаждение частиц огарка, поступающих из нижней зоны, что достигается резким снижением линейной скорости потока газа в верхней зоне печи. [c.55]

    Размеры отстойников для очистки газов от пылей и туманов (пыльные камеры и газоходы) обычно рассчитывают, исходя из равенства времени пребывания запыленного газа в газоходе (принимая структуру потока поршневой) и времени осаждения частицы to при найденной скорости осаждения частицы (ур. П-5). На основании элементарных соотношений получаем [c.51]

    Один из способов повышения эффективности мокрых пылеуловителей — использование конденсационного метода, в котором частицы тумана фосфорной кислоты предварительно укрупняются парами жидкости. Схема очистки газов в этом случае представляет собой последовательное соединение двух аппаратов—полого скруббера и эмульгационной колонны [90]. Очищаемый газ поступает в скруббер, где смешивается с водяным паром. При охлаждении парогазовой смеси в скруббере частицы тумана укрупняются в результате конденсации паров воды на поверхности частиц -и коагуляции частиц тумана. Укрупненные частицы вместе с газовым потоком поступают в эмульгацион-ную колонну, где они улавливаются. Осажденные частицы выводятся с водой из колонны, а очищенный газ выбрасывается в атмосферу. [c.227]

    Рассмотрим процесс закоксовывания труб с точки зрения существования с грукчурных фазовых переходов. В определенном локальном месте змеевика за счет термолиза достигается концентрация ПМЦ, при которой начинает происходить массовое ассоциирование. Известно, что с yвeJшчeниeм размера частицы дисперсной фа 1ы снижается ее агрегативная устойчивость. Это приводит к интенсификации процесса осаждения частиц на внутренней поверхности труб (закоксовыванию). Для труб необходимо дополнительно учитывать гидродинамические особенности потока сырья, которые ведут к увеличению вероятности [c.21]

    Критерии Рейнольдса характеризует гидродинамическое подобие при движении потоков жидкости, а в случае осаждения частицы — гидродинамическое нодобие прн обтекании частицы лшдкостью. Значение критерия Рейнольдса ьайдено из комплекса в уравнении (2.14), выражающего соотношение инерционных сил и сил трения, [c.40]

    Сущность отстаивания заключа( тся в том, что пыль, суспензию или эмульсию пропускают через камеру (рис. 3-1), на дно которой под действием силы тяжести ос.ан даются взвешенные частицы. При отстаивании должны соблюдаться два основных требования 1) время пребывания элемента потока в аппарате должно быть равно или больиге времени осаждения частиц 2) линейная скорость потока в аппарате должна быть значительно меньше, чем скорость осаждения. [c.48]

    Физическая сущность процесса осаждения под действием центробежной силы заключается в том, что во вращающемся потоке па взвешенную частицу действует центробежная сила, направляющая ее к периферии от центра по радиусу со скоростью, равной скорости осаждения (см. рис. 3-6). Окружная скорость несущего частицу потока w . Частица движется с peзyJlьтиpyюп eй скоростью по траектории ab и оседает 1ш стенках аппарата. [c.51]

    Воздушная соиарация существенно отличается от гидравлической классификации тем, что скорость осаждения частиц в воздухе значительно болыпе скорости осаждения частиц в воде. Воздушная сепарация осуществляется обычно в восходящем воздушном потоке. [c.478]

    Расчет электрофильтра по скорости осаждения частиц в электрическом поле сложен из-за необходимости учета множества факторов, влияющих на осаждение. Необходимо знать дисперсный состав пыли, диэлектрическую проницаемость ее частиц, свойства газа и пыли и учесть их влияние на режим работы элерстро-фильтра. В связи с этим электрофильтры обычно подбирают, используя практические данные о допускаемой скорости очищаемых газов в электрическом поле электрофильтра (в пределах 0,2—1,5 м/с). Конструкцию электрофильтра выбирают также по данным эксплуатационного опыта она должна обеспечивать необходимую степень улавливания пыли из газового потока и надежность в работе. [c.231]

    Из формулы (VIII,10) следует, что скорость осаждения частиц в циклоне при других равных условиях растет с увеличением входной скорости пылегазового потока в циклон II с уменьшением его радиуса. С уменьшением радиуса циклона его осадительная способность повышается, растет степень извлечения пыли из смеси, одпако при этом увеличивается гидравлическое сопротивление и уменьшается производительность циклона. [c.324]

    Для обработки питьевой и сточных вод применяются смесители, в которых направляющие перегородки не касаются друг друга и со всех сторон открыты потоку (рис. ХУ11-9). В зависимости от источника воды и дальнейшего ее использования необходимо добавлять в нее некоторое количество кислоты или щелочи. При нейтрализации воды может происходить образование тонкодисперсных суспензий гидроксидов металлов, которые с трудом выделяются из воды. С целью осаждения частиц из этих суспензий в стоки обычно добавляют химические флокулянты. При этом расходы смешиваемых потоков значительно различаются между собой, что требует применения эффективного смесителя, который также не должен засоряться. Как правило, в таких случаях используют смесители, изготовленные из пластмасс (полипропилена, фторопласта). [c.453]

    В большинстве пылеулавливающих устройств обычно несколько упомянутых выше процессов одновременно участвуют в очистке газового потока, хотя чаще всего только один из них я1вляется основным при осаждении частиц определенного типа. Та к, процесс фильтрации основан на инерционном и прямом захвате и Броуновской диффузии. Однако Броуновская диффузия играет доминирующую роль в удалении частиц субмикронных размеров, тогда как инерция и прямой захват являются основными механизмами улавливания частиц микронного размера. В этом процессе важную роль могут играть также электростатические силы, поскольку заряженные частицы могут индуцировать заряд на незаряженной фильтрующей среде. [c.24]

    О патронных фильтрах из спеченной бронзы или нержавеющей стали упоминалось выше (стр. 84). Гильзы патроинЫ Х фильтров могут изготовляться из алунда, который выдерживает значительные температуры. Они монтируются либо внутри газохода, либо в подогреваемой секции снаружи газохода. Как алундовые, так и фарфоровые фильтровальные гильзы отл1Ичаются большим сопротивлением газовому потоку и быстро забиваются. До 350 °С внутри газохода с успехом применялись рукавные фильтры из стеклоткани. Для более холодных газов начинают применяться бумажные фильтровальные гильзы их достоинство состоит в однократном использовании, и для сбора осажденных частиц можно воспользоваться стандартными лабораторными методами. [c.87]


Смотреть страницы где упоминается термин Поток при осаждении частицы: [c.203]    [c.250]    [c.315]    [c.316]    [c.341]    [c.11]    [c.11]    [c.210]    [c.16]    [c.175]    [c.48]    [c.454]   
Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.118 , c.119 ]

Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.118 , c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Осаждение частиц



© 2025 chem21.info Реклама на сайте