Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилирование и ацилирование ароматических углеводородов

    Реакции алкилирования и ацилирования ароматических углеводородов, которые относятся также к реакциям электрофильного замещения, называются реакциями Фриделя — Крафтса. [c.282]

    При алкилировании и ацилировании ароматических углеводородов получаются соответственно их алкильные и ацильные производные. Реакции алкилирования и ацилирования ароматических углеводородов, которые относятся также к реакциям электрофильного замещения, называются реакциями Фриделя — Крафтса. [c.297]


    Хлористый алюминий катализирует реакции ароматических углеводородов с галогенсодержащими соединениями. Эти реакции сопровождаются образованием связей С—С и могут быть отнесены к числу реакций конденсации. Часто эти процессы проходят с выделением хлористого водорода или других простых молекул. Указанные реакции разделяют на две группы 1) алкилирование ароматических углеводородов 2) ацилирование ароматических углеводородов (синтез кетонов ароматического ряда). [c.154]

    Здесь следует рассмотреть два основных варианта реакции Фри-деля-Крафтса. Первый вариант — прямое алкилирование бензола (или гомологов) с применением олефинов или неорганических сложных эфиров (алкилгалоидов или сульфатов) и небольших количеств катализатора. Другой вариант заключается в ацилировании с образованием арилал-килкетонов (как промежуточных соединений) и восстановление их в ароматические углеводороды. Ацилирование производится хлорангидридами или ангидридами с добавлением стехиометрических количеств катализатора — галогенида металла, обычно безводного хлористого алюминия  [c.480]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]


    В данной главе будут рассмотрены реакции взаимодействия ароматических соединений с электрофильными реагентами, которые, как правило, приводят к образованию продуктов замещения. Обычно при этом в качестве уходящей группы выступает протон. Это нитрование, сульфирование и галогенирование ароматических соединений, алкилирование и ацилирование ароматических углеводородов по Фриделю —Крафтсу, азосочетание, хлорметилирование и ряд других. Все эти реакции идут по общей схеме  [c.361]

    Алкилирование ароматических углеводородов является типичной реакцией замещения электрофильного класса. Вследствие его особого значения в химии нефти оно было подвергнуто особенно детальному обсуждению. Другие реакции электрофильного замещения—галоидирование, нитрование, сульфирование и ацилирование — также очень важны для превращения простых ароматических углеводородов в технически ценные продукты. Поэтому эти реакции будут рассмотрены более детально, чем хлорметилирование, керкурирование и фотолиз, цмеющие в настоящее время лишь теоретический интерес. [c.445]

    Реакции электрофильного замещения — нитрование, сульфирование, галогенирование, ацилирование, алкилирование в ароматическом ряду относятся к числу важнейших, так как позволяют перейги от углеводородов или их гетероциклических производных к любым их функциональным производным. [c.219]

    Открытие возможности применения хлористого алюминия в качестве катализатора для органических реакций возникло в результате случайного наблюдения над действием металлического алюминия на хлористый амил . Позднее Фридель и Крафте поняли, что не сам металл, а его галоидное соединение является активирующим веществом, и в течение пяти-шеети недель подтвердилось каталитическое свойство хлористого алюминия в процессах алкилирования или ацилирования ароматических углеводородов путем действия на них хлористого алкила или хлористого ацила. Полученные результаты, повидимому, в самом же начале показали, что любое число галоидных атомов в парафиновом углеводороде может быть замещено фенильными группами, что все шесть водородных атомов в бензольном кольце могут быть последовательно замещены алкильными радикалами и что галоид в боковой цепи ароматического углеводорода реагирует даже с еще большей скоростью с бензольным кольцом. Стало возможным получение кетонов действием хлорангидридов жирных или ароматических одноосновных или двухосновных кислот на бензол или его гомологи. Таким образом, в первых же статьях был развернут во всей полноте способ приготовления множества новых соединений. [c.13]

    Реакция Фриделя—Крафтса в настоящее время превратилась в широко применяемый метод для алкилирования и ацилирования ароматических углеводородов. Патент Фриделя и Крафтса Усовершенствования в переработке углеводородов с целью очистки и превращения их в другие соединения [2] был, вероятно, первым из многочисленных патентов, касающихся применения хлористого алюминия в нефтяной промышленности. Полимеризующее действие хлористого алюминия получило подобное же широкое применение. [c.14]

    Многие ароматические углеводороды получают непосредственно из каменноугольной смолы или косвенно из нефти. Каменноугольная смола содержит бензол, нафталин, толуол, ксилол и т.д., которые можно выделить перегонкой, и она широко использовалась как первичный источник ароматических углеводородов. Однако во время второй мировой войны был разработан процесс получения ароматических углеводородов из нефти, и в настоящее время это главный источник ароматических углеводородов. Сама нефть состоит главным образом из алифатических углеводородов, таких, как гептан и октан, которые превращаются в ароматические углеводороды (толуол и ксилол) при пропускании над катализатором — оксидом металла при высокой температуре. В лаборатории алкилбензолы можно получить алкилированием по Фриделю — Крафтсу или ацилированием с последующим восстановлением (разд. 5.4). [c.119]

    При обзоре конденсаций этого типа сразу можно увидеть, что алкилирование по Фриделю—Крафтсу прочих соединений, кроме ароматических углеводородов, применялось не так широко, как ацилирование (см. гл. 6). В конденсациях с галоидангидридами фенолы и простые эфиры фенолов реагируют даже более легко, чем углеводороды. Однако при алкилировании по Фриделю—Крафтсу присутствие гидроксильных или алкоксиль-ных групп не имеет, повидимому, такого активирующего влияния. Алкн-лирование фенолов или эфиров часто требует примепения молярных коли- [c.170]

    С практической точки зрения электрофильное замещение в настоящее время является наиболее важным из реакций замещения для ароматических углеводородов. В этот класс включаются такие хорошо известные реакции, как алкилирование, ацилирование, нитрование, сульфирование и галоидирование. Этот класс реакций замещения привлек наибольшее внимание химиков, интересующихся теоретической стороной химии ароматических соединений. Поэтому в настоящей главе особое внимание уделено электрофильным реакциям замещения и дано более краткое описание развивающимся областям нуклеофильных и свободно-радикальных реакций замещения. [c.392]


    Первые исследования по применению фтористого бора как катализатора для ацилирования фурана, тиофена и их производных появились в 1947 г. Несмотря на сравнительно короткий срок, роль ВРз в этих реакциях выяснена уже достаточно подробно. Фтористый бор может применяться самостоятельно, но лучше в виде молекулярных соединений с уксусной или ортофосфорной кислотами, метиловым спиртом и, особенно, с этиловым эфиром. Причем, в отличие от реакции алкилирования ароматических углеводородов, где этот катализатор можно употреблять в количествах 1 моль и более на 1 моль углеводорода для ацилирования фурана, тиофена и их замещенных с хорошим выходом соответствующего кетона, достаточно вводить 0,001 — [c.324]

    Значительные количества промышленных стоков, образующихся при нитровании ароматических соединений нитрующими смесями, удается сократить регенерацией серной кислоты и ее повторным использованием. Еще лучше результаты в ряде случаев при нитровании ароматических соединений азотной кислотой в низкокипящих органических растворителях, например фреонах. Весьма перспективны исследования по нитрованию ароматических углеводородов в присутствии нерастворимых перфторированных полимеров, содержащих сульфогруппу. Их же удается успешно использовать при проведении реакций алкилирования и ацилирования вместо хлорида алюминия. [c.348]

    Имеются некоторые экспериментальные указания относительно того, что положительные ионы К" , образующиеся в реакции алкилирования ароматического ядра (том I), являются реагентами с очень высокой электрофильной активностью. Ионы КСО+, возникающие в качестве промежуточных продуктов в ацилировании ароматического ядра, значительно менее реакционноспособны (вследствие того что они стабилизированы сопряжением между тт-электронами СО-группы и соседней свободной орбитой). Поэтому в синтезах углеводородов, по Фриделю — Крафтсу, образуются. ета-изомеры, а в синтезах кетонов они не получаются (X. К. Браун). [c.43]

    Алкилирование и ацилирование осуществлены в одной стадии, при обработке ароматического углеводорода ацилирующим и алкилирующим [c.224]

    Оси. исследования посвящены ал-килированию и ацилированию ароматических соед. Разработал (1933—1934) методы алкилирования ароматических углеводородов спиртами в присутствии хлорида алюминия. Изучал р-ции алкилирования бифункциональными соед. и предложил ряд способов получения галоид-, окси-, алкокси-, карбокси-, циан- и нитропроизводных. Проводил (с 1963) работы по синтезу и подбору новых дефолиантов, десикантов и др. растительных регуляторов. [c.487]

    Конденсированные бензоидные углеводороды также легко вступают в реакции электрофильного замещения (нитрование, сульфирование, галогенирование, ацилирование и алкилирование) и проявляют тем самым свойства ароматических соединений (подробнее об их свойствах см. в гл. 11). [c.398]

    Продукты переработки нефти — ароматические углеводороды широко используются в качестве сырья в химической промышленности. Из продуктов дальнейшей переработки ароматики большую роль играют арилгалогениды, используемые преимуп1,ественно в "тонком" органическом синтезе, в т. ч. в синтезе ароматических кислот. Ароматические кислоты и их производные (эфиры, соли) широко используются в производстве лекарственных препаратов, средств защиты растений, лакокрасочных и смазочных материалов, ингибиторов коррозии. В настоящее время активно расширяется использование этих соединений при создании новой техники жидкокристаллических материалов, полиэфирных волокон и ЖК-термопластов из полиароматических кислот, электролюминесцентных соединений. Используемые в настоящее время традиционные методы синтеза ароматических кислот не однотипны, основаны на наборе классических реакций органической химии алкилировании, ацилировании, окислении, цианировании, и имеют ряд серьезных недостатков — многостадийность, низкую селективность, значительные расходы сырья, сложность технологических схем и экологическую опасность. [c.71]

    В одной из последующих 1"лав (см. конец гл. 16 Гидролиз сложных эфиров ) указывается, что хлористый алюминий ускоряет гидролиз эфиров органических кислот. Ксли такое расщепление сложного эфира происходит в присутствии ароматического углеводорода, то, очевидно, может итти как процесс алкилирования, так и ацилирования. Действительно, обе эти реакции имеют место так, конденсация бензола с этилацетатом в присутствии хлористого алюминия дает этилбензол и этилацетофенон, причем относительные выходы этих веществ зависят от условий реакций. [c.668]

    В патенте Рейфа [774] описывается копденсация высокомолекулярных алифатических хлорированных углеводородов с ароматическим оксисоединением и последующее ацилирование образовавшегося высшего алкилированного оксиароматического соединения с насыщенным или ненасыщенным алифатическим, ароматическим и аралкилгалоидан-гидридом моно- или поликарбоновых кислот. В качестве конденсирующего агента и для алкилирования и для ацилирования применялся хлористый алюминий. [c.339]


Смотреть страницы где упоминается термин Алкилирование и ацилирование ароматических углеводородов: [c.64]    [c.353]    [c.1102]    [c.438]    [c.891]    [c.892]   
Смотреть главы в:

Практикум по органическому синтезу -> Алкилирование и ацилирование ароматических углеводородов

Практикум по органическому синтезу -> Алкилирование и ацилирование ароматических углеводородов




ПОИСК





Смотрите так же термины и статьи:

Ароматические ацилирование

Ацилирование



© 2025 chem21.info Реклама на сайте