Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижность ионов. Электропроводность

    Учитывая связь, существующую между коэффициентом диффузии и подвижностью ионов, а также ионной электропроводностью, можно написать следующие уравнения для эффективного коэффициента диффузии электролита  [c.144]

    Пользуясь таблицей предельных подвижностей ионов (табл. ХУП, 2) и законом Кольрауша, можно легко вычислить предельную электропроводность соответствующих растворов [c.430]


    С ростом напряженности электрического поля Р подвижность ионов возрастает и при определенном значении может достичь такой величины, когда за удвоенное вре-мп релаксации ион будет успевать выходить за пределы ионной атмосферы. При таких условиях ионные атмосферы не образовываются, поэтому вызываемые ими тормозящие эффекты не возникают, т. е. Я] = О и Яц = 0. Измеренная величина эквивалентной электропроводности электролита в этом случае составляет (эффект Вина). [c.41]

    В кондуктометрическом методе анализа измеряемым аналитическим сигналом является электропроводность раствора. Зависимость этого параметра от концентрации представлена на рис. 2.1. По мере увеличения концентрации растворенного электролита увеличивается количество ионов-переносчиков заряда, т. е. растет удельная электропроводность. Однако после достижения определенного максимального значения удельная электропроводность начинает уменьшаться, поскольку для сильных электролитов усиливаются релаксационный и электрофоретический эффекты, а для слабых электролитов уменьшается степень их диссоциации. Электропроводность бесконечно разбавленного раствора Коо определяется подвижностью ионов в отсутствие тормозящих эффектов X ОО. и Хоо.. [c.103]

    Кондуктометрический метод анализа является одним из наиболее точных способов определения растворимости труднорастворимых соединений (электролитов). Он основан на измерении электропроводности раствора, находящегося в равновесии с твердым осадком малорастворимого сильного электролита. Зная подвижность ионов и >1 , иа которые диссоциирует труднорастворимая соль в силь-норазбавленном растворе, и определив экспериментально удельную [c.267]

    При конечной концентрации связь эквивалентной электропроводности с подвижностью несколько сложнее. Для слабого электролита (U+V)a. Если с повышением температуры подвижности ионов возрастают, то степень диссоциации может и уменьшаться, поскольку диэлектрическая проницаемость раствора при нагревании уменьшается, т. е. силы взаимодействия между ионами увеличиваются. Следовательно, кривая зависимости электропроводности от температуры может иметь максимум. [c.438]

    Подвижности Я+ и к- пропорциональны абсолютным скоростям движения ионов и+ и и . -Можно сказать, что подвижности ионов представляют собой абсолютные скорости движения последних, выраженные в единицах электропроводности, т. е. [c.409]

    Электропроводность. Многочисленными исследованиями различных авторов установлена близость закономерностей диффузии и электропроводности, а в ряде случаев и однозначная связь между ними. Поэтому можно считать, что электропроводность большинства полимеров, в том числе и эластомеров, определяется в основном подвижностью ионов. На ионный характер электропроводности полимеров указывают и результаты исследования прохождения тока через растворы полимеров или через полимеры, содержащие большое количество пластификатора. [c.72]


    Электростатическая теория растворов объясняет сравнительно малую электропроводность расплавленных солей огромным тормозящим влиянием ионной атмосферы, которая здесь имеет характер ближнего окружения каждого иона ионами противоположного знака. Растворитель, уменьшающий взаимодействие ионов, отсутствует, а расстояния между нонами очень малы. Вследствие отсутствия сольватации подвижности ионов в расплавах непосредственно связаны с их радиусами, и в ряду щелочных катионов наблюдается правильная последовательность подвижностей  [c.452]

    Растворы солей проводят электрический ток, и это их свойство сыграло чрезвычайно важную роль на первой стадии развития теорий химической связи. Электропроводность металлов обусловлена перемешением в них электронов ионы металла при протекании через него электрического тока остаются на своих местах. Кристаллические соли вообще не проводят электрический ток, но если расплавить соль, положительные и отрицательные ионы при наличии электрического напряжения могут в жидкости направленно мигрировать в противоположные стороны. Подвижность ионов соли оказывается еще большей, если соль растворена в воде и, следовательно, если ее ионы гидратированы. [c.40]

    Увеличение кинетической энергии растворенных частиц способствует распаду молекул на ионы, что приводит к возрастанию степени диссоциации при нагревании растворов. Поэтому, а также в связи с увеличением подвижности ионов электропроводность растворов и расплавов электролитов, как правило, возрастает при повышении температуры. [c.171]

    Этот результат, а также результат, полученный для электрофоретического эффекта, потребуются нам для вычисления подвижности, ионной электропроводности и эквивалентной электропроводности электролита. Общее поле, действующее на изучаемый нами ион, равно Х- -ДХу. В результате электрофоретического эффекта скорость иона была меньше, чем величина уш,-(X-(-ДХу). Учитывая все эти обстоятельства, можно найти результирующую скорость в направлении оси х  [c.90]

    Эквивалентная электропроводность растворов солей выражается величинами порядка 100—13С см Iг-экв ом. Ввиду исключительно большой подвижности иона гидроксония величины Яоо для кислот в 3—4 раза больше, чем для солей. Щелочи занимают промежуточное положение. [c.430]

    Теория электролитической диссоциации Аррениуса не учитывала влияния концентрации на подвижность ионов, хотя, как выяснилось, влияние концентрации на подвижность может быть весьма существенным. Уменьшение эквивалентной электропроводности с концентрацией Аррениус объяснял не уменьшением подвижности ионов, а уменьшением степени диссоциации. [c.433]

    Предельные подвижности ионов, а также удельная электропроводность электролитов всегда увеличиваются с повышением температуры (в противоположность электропроводности металлов, которая уменьшается с повыше- [c.436]

    Составляющие и называются ионными электропроводностями или подвижностями ионов . Они выражаются в тех же единицах, что и А, [в см /(ом г-экв)], т. е. относятся к I г-экв данных ионов. Значения их для некоторых ионов приведены в табл. 45. [c.409]

    При переходе от воды к другим растворителям изменяются электропроводность, подвижность ионов и, в меньшей степени, число переноса. Основными свойствами растворителя, обусловливающими характер изменения электропроводности, являются его вязкость н диэлектрическая проницаемость. Повышение вязкости снижает элсктропронодиость. Количественное выражение этого эффекта было сформулировано Вальденом и Писаржевским в виде правила Вальдсиа — Писаржевского [c.111]

    Ионные электропроводности (подвижности ионов) и при 25° С [см /(ом г-экв)] [c.409]

    Нередко подвижностями называют величины v+ н V-, а величины Л+ и А,- тогда называют ионными проводимостями или ионными электропроводностями. [c.409]

    Для объяснения концентрационных зависимостей электропроводности (1.39) — (1.41) и влияния концентрации на подвижность ионов необходимо принимать во внимание взаимодействие между ионами, а также взаимодействие ионов с молекулами растворителя. [c.39]

    Для аномально подвижных ионов (Н" , ОН"), у которых имеются заметные отклонения от правила Вальдена (постоянство произведения предельной эквивалентной электропроводности ионов на вязкость растворителя т], т. е. = onst), значения энергии активации подвижности, соответствующие прототропному механизму миграции этих ионов, ниже (см. табл. 50). [c.353]

    Этап I. Определить эквивалентную электропроводность при бесконечном разбавлении Я для каждого электролита, исходя из подвижностей ионов. [c.46]

    Скорость и подвижность ионов. Электропроводность растворов электролитов зависит от количества ионов, нроходян их в единицу времени через любое сечение, перпендикулярное силовым линиям внешнего электрического поля и скорости передвижения ионов. Когда внешнее электрическое поле отсутствует, ионы в растворе находятся в хаотическом тепловом движении. При наложении внешнего электрического поля хаотическое тепловое движение ионов сохраняется, но на него накладывается ориентированное поступа- [c.87]


    Кондуктометрический метод аналнза — один пз наиболее точных способов определения растворимости труднорастворимых соединений. Он основан на измерении электропроводности жндкой фазы, находящейся в равновесии с соответствующим твердым соединением. Если известны подвижности ионов, на которые диссоциирует данное труднорастворимое соединение, то, определив электропроводность раствора, можно вычислить его концентрацию по уравнению [c.116]

    Пусть имеется раствор щелочи, который необходимо оттитровать кислотой. Предположим, что взят раствор, содерхащий а моль-л- NaOH. Его электропроводность определяется подвижностями ионов N a+ и ОН , равными при 25° С соответственно 50,1 и 197,6. К этому раствору прибавляют порцию титрующего раствора, содержащего х моль-л НС1. Если х<а, то произойдет частичная нейтрализация щелочи кислотой  [c.116]

    Кат. ч Ап, — соответстсенно подвижности катионов и апм онов (ионные электропроводности) с — концентрация более концентрированного и с —менее концентрированного раствора (е <е"). Рассмотрим, например, электролиз медного купороса с медными электродами [c.252]

    В формуле (XVIII, 16) для расчета степени диссоциации растворов— электролитов сопоставляются эквивалентная электропроводность при данном разбавлении, отвечающая некоторому конечному среднему расстоянию между наличными ионами, и эквивалентная электропроводность при бесконечном разбавлении, т. е. при условиях, когда расстояния между ионами бесконечно велики. Подвижность ионов зависит от расстояний между ними. Поэтому правильнее сопоставлять эквивалентную электропроводность X при данном разбавлении с эквивалентной электропроводностью X неосуществимого на практике раствора с той же концентрацией ионов, но полностью диссоциированного. Таким обравом, истинное значение степени диссоциации можно найти из формулы  [c.466]

    Для водных и органических оастворителей на температурную зависимость электроироводпосги влияют вязкость, диэлектрическая проницаемость, степень диссоциации и подвижности ионов. Для водных растворов степень диссоциации для большинства электролитов уменьшается с ростом температуры, уменьшается вязкость растворов и возрастает подвижность нонов. Для органических растворителей температурный коэффициент электропроводности положителен. Изме- [c.281]

    Метод кондуктометрического титрования основан на том, что ионы, содержащиеся в прибавляемом растворе, соединяются с теми или другими ионами из находящихся в титруемом растворе, образуя молекулы слабо диссоциирующего соединения (например, H+-I-OH HjO) или малорастворимое вещество (например, Ag + l —> Ag l). В получаемом же растворе взамен удаленных ионов будут содержаться другие ионы в эквивалентном количестве. При различии в подвижности ионов такая замена приводит к изменению электропроводности раствора. Так, при титровании раствора гидроокиси натрия раствором соляной кислоты взамен ионов ОН" в раствор будут поступать ионы h, обладающие меньшей подвижностью, что вызовет уменьшение электропроводности. Например, эквивалентная электропроводность сильно разбавленного раствора гидроокиси натрия, равная сумме подвижностей ионов Na и ОН", составляет при 18° С  [c.412]

    Элек фохшчия. Свойства растворов электролитов. Учение об лек-чропроводности проводников второго рода. Удельная и эквивалентная электропроводности растворов электролитов. Подвижность ионов. Кондуктометрия. Химические источники тока. Электродный потенциал, электродные равновесия. Электроды 1 и 2 рода, окислительно-вос- [c.8]

    Для получения надежных результатов при кондуктометрическом титровании следует иметь в виду, что удельная электропроводность, изменяющаяся в процессе химической реакции, является аналитическим сигналом, зависящим от многих факторов, которые надо учитывать констант образования (диссоциации) всех участников химической реакции, константы автопро-толиза растворителя, подвижности ионов, ионной силы раствора и др. Использование неводных органических растворителей значительно расширяет возможности кондуктометрического метода анализа. [c.105]

    При титровании раствором ЭДТА солей металлов в растворах, не содержащих буферных смесей, на кривой титровани5ч имеется максимум, соответствующий точке эквивалентности, до гочкн эквивалентности электропроводность раствора возрастает UI счет увеличения концентрации наиболее подвижных ионов И > в соответствии с реакцией, происходящей, например, при )Н = 5  [c.109]

    Кондуктометрическос определение ККМ основано на измерении концентрационной завис имости электропроводности растворов ионогенных ПАВ. В области концентраций до ККМ зависимости удельной и эквивалентной электропроводности от концентрации ПАВ соответствуют аналогичным зависимостям для растворов средних по силе электролитов. При концентрации, соответствующей ККМ, на графиках зависимостей наблюдается излом, обусловленный образованием сферических ионных мицелл. Подв жность ионных мицелл меньше подвижности ионов и, кроме того, значительная часть противоионов находится в плотном слое Гельмгольца, что существенно уменьшает электропроводность раствора ПАВ. Поэтому при увеличении концентрации ПАВ больше ККМ эквивалентная электропроводность более резко уменьшается, а возрастание удельной электропроводности значительно ослабляется. По изменению удельной электроп[)Оводности х можио также определить ККМй (рис. 38). [c.133]

    Влияние природы электролита на электропроводность можно объяснить неодинаковой подвижностью ионов. Ано-мгльно высокими подвижностями обладают ионы водорода и гидроксила. [c.39]


Смотреть страницы где упоминается термин Подвижность ионов. Электропроводность: [c.314]    [c.167]    [c.130]    [c.142]    [c.429]    [c.438]    [c.409]    [c.132]    [c.258]    [c.258]    [c.268]    [c.303]    [c.195]    [c.114]    [c.201]    [c.202]   
Смотреть главы в:

Физика растворов -> Подвижность ионов. Электропроводность




ПОИСК





Смотрите так же термины и статьи:

Ионная подвижность

Ионная подвижность Подвижность

Подвижность иона

Подвижность ионов



© 2024 chem21.info Реклама на сайте