Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная агрессивность морской воды

    Факторы, определяющие коррозионную агрессивность морской воды, можно разделить на химические, физические и биологические (табл. 1.4). [c.17]

    Коррозионная агрессивность морской воды обусловлена ее особыми свойствами. Прежде всего это высокое содержание хлорида натрия, наличие соединений Са и Mg , высокая электропроводность, отрицательное значение индекса насыщения, высокий pH, загрязненность промышленными отходами, особенно в приморских промышленных городах, т. е. как раз там, где морская вода используется для нужд предприятий. [c.17]


    КОРРОЗИОННАЯ АГРЕССИВНОСТЬ МОРСКОЙ ВОДЫ [c.93]

    Коррозионная агрессивность морской воды [c.298]

    Введение Мо и в хромистые нержавеющие стали увеличивает их коррозионную стойкость в средах повышенной агрессивности (морская вода, органические кислоты и т.д.). В окислительных средах (например, НЫОз), напротив, коррозионная стойкость этих статей при введении Мо уменьшается. [c.12]

    Во многих случаях необходимо проводить испытания в морской воде. Агрессивность морской воды как коррозионной среды определяется в первую очередь содержанием в ней солей. [c.48]

    Коррозионная стойкость оловянистых бронз немного выше стойкости меди в ряде агрессивных сред, в частности в серной кислоте невысоких концентраций и в других слабокислых средах, в морской воде, в щелочных растворах (исключая аммиач-1И)1е) и др, [c.250]

    Эффективное решение этих проблем в определенной степени зависит от надежности и долговечности оборудования и сооружений, работающих в различных условиях контакта с морской водой, которая обладает высокой коррозионной агрессивностью. [c.184]

    Взаимодействие цементного камня и бетона с агрессивной средой, например морской водой, углекислотой, ЗОг и НгЗ, а также ионами водорода и 8042-, приводит к коррозии сначала поверхностного слоя, затем коррозионный фронт перемещается внутрь материала. [c.371]

    Одним из важнейших свойств титана является его высокая коррозионная стойкость во многих агрессивных средах, которая обусловливается быстрым образованием на его поверхности тонкой инертной пленки из двуокиси, которая взаимодействует с нижележащим слоем титана с образованием низших оксидов, растворимых в металле, благодаря чему защитная пленка прочно связывается с поверхностью. Наиболее устойчив титан в водных растворах нейтральных солей. По коррозионной стойкости в морской воде и горячих концентрированных растворах хлоридов титан значительно превосходит все известные нержавеющие стали и цветные металлы. Если же коррозия титана имеет место, то она почти всегда протекает однородно, без локализации по точкам, язвам или границам зерен. [c.88]

    Высокохромистый чугун обладает высокой химической стойкостью в ряде агрессивных сред в азотной, серной, фосфорной кислотах, в растворах щелочей, солей, морской воде и др. Высокая коррозионная стойкость высокохромистого чугуна объясняется тем, что хром (в пределах 15—30%) образует пассивирующую пленку. [c.138]


    Сплавы обладают высокой коррозионной стойкостью в морской воде и в других средах средней и повышенной агрессивности [c.152]

    Сплавы обладают высокой коррозионной стойкостью в морской воде и других агрессивных средах [c.152]

    Стендовые испытания на ударную коррозию, применяющиеся в частности, для конденсаторных трубок, проводятся путем воздействия на металл струей коррозионно-агрессивных растворов либо морской воды. [c.180]

    Очень сильное влияние на скорость коррозионного процесса оказывает изменение агрессивных факторов. Об этом свидетельствуют следующие эксперименты. Одну часть образцов на стали выдерживали в эксикаторе над горячей морской водой в условиях 100%-ной влажности в течение 30 сут. Другую их часть из той же стали подвергали испытанию в различных условиях. Вначале их выдерживали в эксикаторе над горячей морской водой в течение 24 ч, затем 7 ч в термостате при температуре 40 °С и относительной влажности воздуха 79%, после чего—в холодильнике при температуре -Ь8 °С и влажности воздуха 63%. Испытания продолжали в течение 30 сут. [c.44]

    Установлено, что коррозионная стойкость хромомарганцевых сплавов в открытой атмосфере и в морской воде не всегда оказывается в прямой зависимости от концентрации легирующего элемента. Например, хромомарганцевая сталь, содержащая 25% хрома и 15% марганца, не имеет большого преимущества перед остальными хромомарганцевыми сплавами, содержащими сравнительно меньше хрома. Хромомарганцевые сплавы, легированные ниобием, в открытой атмосфере не имели преимущества по коррозионной стойкости перед другими хромомарганцевыми сплавами, а в морской воде они оказались более коррозионностойкими. Коррозионная стойкость любого сплава во многом зависит от правильного подбора легирующих элементов и их процентного соотношения с учетом характера агрессивной среды. [c.63]

    Водные растворы солей в зависимости от их состава и величины pH оказывают различное коррозионное действие на магний и его сплавы. Растворы, содержащие ионы хлора, вьь зывают более значительную коррозию, чем растворы с сульфат-или нитрат-ионами, так как на металлической поверхности образуется очень пористая пленка. Магний и его сплавы, за исключением специальных сплавов с высоким содержанием марганца, корродируют в морской воде. При одинаковом содержании хлорида натрия скорость коррозии в морской воде значительно выше, чем в чистом растворе хлорида натрия из-за наличия в морской воде агрессивных сульфат-ионов. Нейтральные и щелочные растворы фторидов не агрессивны по отношению к магнию и его сплавам вследствие образования защитной пленки. [c.135]

    Соленость морской воды зависит прежде всего от притока пресной воды и интенсивности испарения. Средняя соленость океанской воды около 3,5 %. Так как в морской воде содержится большое количество хорошо растворимых солей (табл. 1.5), то она электропроводна и более коррозионно-агрессивна по сравнению с пресной водой. [c.17]

    Морская вода —одна из агрессивных и наиболее распространенных коррозионных сред. Известно большое число публикаций и отдельных монографий по различным аспектам коррозии и защиты в морской воде. Предлагаемый вниманию читателя справочник под редакцией М. Шумахера представляет первое, наиболее полное собрание экспериментальных данных по коррозии промышленных материалов в морской воде. [c.8]

    Для ряда материалов, в частности для малоуглеродистой стали, коррозионные условия в зоне брызг являются наиболее агрессивными. Содержащиеся в брызгах пузырьки воздуха усиливают разрушающее действие морской воды на защитные пленки и покрытия. Лакокрасочные покрытия обычно разрушаются в зоне брызг быстрее, чем в любой другой зоне. [c.16]

    Опыт эксплуатации теплообменников из сплава 70—30 на 20 эсминцах ВМС США показал, что после 20-летней эксплуатации забивается в среднем лишь 0,37 % конденсаторных трубок. Некоторые из трубок разрушились со стороны, находящейся в контакте с паром. Еще более высокая стойкость сплава 70—30 отмечается на береговых установках, использующих чистую морскую воду. При использовании загрязненной воды скорость забивания трубок продуктами коррозии примерно в 9 раз выше, однако и в этом случае результаты значительно лучше, чем для других медных сплавов. В более агрессивных условиях из двух рассматриваемых сплавов системы медь — никель чаще используется сплав 70—30, обладающий более высокой общей коррозионной стойкостью. В то же время в стоячей морской воде этот сплав характеризуется большей склонностью к питтингу, чем сплав 90—10. [c.114]

    Для деталей, соприкасающихся с агрессивными средами и подверженных при этом значительным нагрузкам (реакторы системы хранения и подготовки реагентов, резервуары под давлением, напорные трубопроводы, агрегаты системы обслуживания и т. д.), или когда условия внешней среды весьма неблагоприятны (морская вода, морской туман, высокая влажность ири повышенных температурах), в ЭХГ широко применяются нержавеющие стали. Для повышения коррозионной стойкости вводят никелирование деталей. [c.397]


    Применение. Широкому применению титана способствует исключительная коррозионная стойкость металла и его сплавов в агрессивных хи.мических средах, а также в морской воде. При высоких температурах сплавы титана превосходят по прочности алюминиевые сплавы и даже нержавеющую сталь. Титан и его сплавы широко применяются в авиационной технике, ракетостроении, судостроении, химическом машиностроении. Порошок металлического титана находит при.менение как поглотитель газов (геттер) в электровакуумной технике. Диоксид титана используется в качестве белого пиг.мента (титановые белила). [c.118]

    Защитные присадки (маслорастворимые ингибиторы коррозии) обеспечивают способность масла защищать металл от внешних коррозионных воздействий за счет предотвращения атмосферной коррозии, защиты от коррозии в условиях влажного климата, воздействия морской воды, электролита, агрессивного газа и пр. Присадки, как правило, работают в тонкой пленке масла на границе раздела металл— электролит . [c.953]

    Приведенные в первых главах книги сведения о коррозионной агрессивности природной (морской и речной), химически очищенной и обессоленной вод, а также конденсата и насыщенного пара, используемых в химическом производстве, должны содействовать решению задачи по выбору оптимальных средств противокоррозионной защиты, начиная со стадии проектирования. [c.5]

    Отложения в значительной степени влияют на протекание коррозионных процессов, затрудняя диффузию кислорода к поверхности металла. Поры в слое отложений образуют своего рода капилляры, по которым к поверхности металла поступает морская вода. Капиллярный эффект проявляется тем значительнее, чем меньше размеры частиц отложений. В порах адсорбируются многие коррозионно-агрессивные составляющие морской воды. Кроме перечисленных факторов, на скорость коррозии влияют минералогическая природа и смачиваемость отложений. В слое морской воды, непосредственно контактирующей со слоем отложений, pH меньше, чем в объеме воды в целом, и меньше, чем в воде, заполняющей капилляры в слое отложений. [c.16]

    Сплавы КХН химически стойки в щелочах, кислотах, растворах минеральных солей, морской воде, расплавленном стекле и других агрессивных жидкостях, не окисляются в воздухе и сохраняют твердость до температуры 1000° С. Высокая износостойкость при абразивном изнашивании и коррозионная стойкость позволяют применять сплавы КХН для клапанов насосов, сопел, уплотнительных колец, конусов и шариков, дроссельных пар. Детали из сплавов КХН обрабатывают шлифованием или электромеханическим способом. Освоено производство стержней для ручной наплавки сплава КХН-15 на стальные поверхности (ТУ 06002—67). [c.78]

    Своеобразие коррозионной среды заключается в достаточно высокой агрессивности морской воды. Действительно, соленость морской воды в мировом океане составляет примерно 3,5%, а в Средиземном море приближается к 4%. Основные компоненты соли в морской воде — Na l (около 78%) и Mg lj (11%). [c.74]

    Одним из важнейших качеств титана является его высокая коррозионная стойкость во многих агрессивных средах, обусловленная образованием на его поверхности тонкой инертной пленки из диоксида, взаимодействующего с нижележащим слоем титана с образованием низших оксидов, растворимых в металле, благодаря чему защитная пленка прочно связывается с поверхностью. Наиболее устойчив титан и водных растворах нейтральных солей. По коррозионной стойкости в морской воде и горячих концентрированных растворах хлоридов титан значительно превосходит все известные нержавеющие стали и цветные металлы. Если и происходит коррозия титана, то почти всегда она протекает равномерно, без локализации по точкам, язвам или границам зерен. Наряду с Э1ИМ ценность титана как конструкционного материала обусловлена его значительной удельной прочностью (отношение прочности к плотности), которая у титана больше, чем у любого другого металла. [c.274]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    В расчетах на прочность технологической аппаратуры конструктору часто приходится учитывать общую равномерную по поверхности коррозию металлов и сплавов, для чего необходимо знать проницаемость материала в мм/год при заданных рабочих условиях агрессивной среды (концентрация, температура, давление). Она учитывается при выборе величины прибавки на коррозию к рассчитанной толщине стенки аппарата. В ряде случаев при конструировании технологической аппаратуры необходимо учитывать также и другие виды коррозионного разрушения материалов. Например, в химических аппаратах, выполненных из кислотостойкой стали и находящихся под постоянным повышенным давлением, при совместном действии коррозионной среды и растягивающих напряжений в ряде случаев наблюдается коррозионное растрескивание металла, происходящее обычно внезапно без видимых изменений материала, Это явление не имеет места при наличии в металле напряжений сжатия. Кроме того, коррозионное растрескивание происходит в небольшом количестве агрессивных сред и зависит от величины давления и температуры, Известно, что ускоренное растрескивание аппаратуры из кислостойких сталей, находящейся под постоянно действующей нафузкой, имеет место в растворах Na I, Mg l,, 7,т)С , Ь1С1, Н 8, морской воде и т,д. Латуни обнаруживают склонность к коррозионному растрескиванию в среде аммиака. [c.9]

    Поскольку измейение солености сопровождается, как правило, и другими эффектами, то суммарное влияние этих изменений на коррозионные процессы следует определять в каждом конкретном случае отдельно. Например, растворимость кислорода в воде Каспийского моря должна быть существенно ниже, чем в морасой воде с соленостью 35 %о. Коррозия в разбавленной морской воде, встречающейся в устьях рек, может быть более сильной, хотя сам по себе электролит может быть менее агрессивным. В отношении растворенных карбонатов обычная морская вода, как правило, ближе к состоянию насыщения, тогда как разбавленная морская вода не насыщена и в ней менее вероятно образование осадка карбонатного типа, что приводит к усилению коррозии. В разбавленной морской воде затруднена, а иногда и совсем невозможна жизнедеятельность морских организмов, в результате чего уменьшается тенденция к образованию на металле защитного слоя при биологическом обрастании. [c.23]

    Углеродистая сталь особенно быстро разрушается в зоне брызг, где скорости коррозии могут быть на порядок выше, чем при полном погружении. Обильный приток кислорода и постоянное смачивание металла морской водой делают зону брызг наиболее агрессивной из всех морских сред. На рис. 11 показаны результаты краткосрочного эксперимента, в котором 4-метровые стальные полосы, а такн е отдельные пластинки помещались в зонах брызг и прилпва. Отметим, что для одной из пластинок в зоне брызг глубина проникновения коррозии (рассчитанная по потерям массы) составила 0,61 мм, что соответствует скорости коррозии около 1,3 мм/год [181. Это примерно в 5—6 раз больше, чем для полностью погруженных пластинок. Отметим также, что для длинных полос скорость коррозии в зоне брызг была в среднем вдвое меньше, чем для расположенных там же квадратных пластинок. На рис. 12 показан типичный коррозионный профиль стальной сваи после 5-летней экспозиции в Кюр-Биче [18]. Скорость коррозии в зоне брызг более чем в четыре раза превосходит скорость коррозии на полностью погруженной части свап. [c.33]

    В гораздо более агрессивной среде, какой является морская вода, скорость коррозии определяется деятельностью и взаимодействием морских микроорганизмов и бактерий. В условиях постоянного полного погружения стальные пластины сначала корродировали с очень высокой скоростью, но быстро обрастали морскими организмами, в дальнейшем этот слой оказывал существенное защитное воздействие. В отсутствие обрастания наибольшие коррозионные потери массы (среди четырех партий образцов) наблюдались бы, несомненно, именно з морской воде. Такое предположение подтверждается сравнением данных для солоноватой и морской воды на рис. 121, а также результатами, полученными при испытаниях в Карибском море, которые обсуждаются ниже. В слегка солоноватой воде обрастание морскими организмами не присходит, поэтому скорость коррозии выше, чем в морской воде, хотя сама по себе малая соленость уменьшает коррозионную активность воды. В результате коррозионные потери в солоноватой воде после 4-летней экспозиции были гораздо выше, чем в морской воде, где проявилось защитное действие биологического обрастания. [c.443]

    В теплообменных аппаратах для изготовления поверхностей нагрева используют обычно трубы из латуней Л68 и Л070-1. Если среда не очень агрессивна, применяют латунь Л68. Латунь Л070-1 отличается бол ве высокой коррозионной стойкостью, но она содержит дорогое олово. Латунь Л68 при.меняют, в частности, для труб поверхностных конденсаторов и бойлеров, работающих на пресной воде. Для конденсаторов, работающих на морской воде, используют латунь Л070-1 или латуни с присадкой мышьяка как более стойкие против коррозии. Трубные ДОСКИ конденсаторов, работающих на морской воде, изготовляют из листовой латуни. [c.55]


Смотреть страницы где упоминается термин Коррозионная агрессивность морской воды: [c.180]    [c.28]    [c.305]    [c.21]    [c.434]    [c.165]    [c.477]    [c.238]    [c.238]    [c.13]    [c.45]   
Смотреть главы в:

Техника борьбы с коррозией -> Коррозионная агрессивность морской воды




ПОИСК





Смотрите так же термины и статьи:

Морская вода



© 2025 chem21.info Реклама на сайте