Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтальпия (теплосодержание) и энтропия

    Пример 1. Подсчитать изменение внутренней энергии AU, теплосодержания (энтальпии) Д/, энтропии AS и свободной энер- [c.162]

    Это первый представитель алканов, который в отличие от других членов гомологического ряда имеет только одну связь С-Н, средняя энергия которой составляет 415,1 кДж/моль. По сравнению с другими углеводородами он имеет минимум свободной энергии (50,74 кДж/моль), минимальное значение энтальпии (теплосодержание, 74,78 кДж/моль) теплоемкости и энтропии, а также высокие значения критической температуры и давления, что приводит к высокой стойкости метана и способствует его повсеместному распространению. Он имеет наибольшую теплоту сгорания 497838 кДж/ моль. Физические свойства метана представлены в табл. 10. [c.25]


    Энтальпия (теплосодержание) и энтропия [c.175]

    Пример 1. Подсчитать измене 1ие внутренней энергии U, теплосодержания (энтальпии) Д/, энтропии Д5 и свободной энергии AF 1 моль ртути при переходе ее из жидкого в газообразное состояние при температуре кипения под давлением 0,1 Мн/м . [c.154]

    Таким образом, энергия Гиббса определяется как изменением энтальпии (теплосодержания), так и изменением энтропии (беспорядка). [c.72]

    Рассмотрим, какие изменения возможны с теплосодержанием (энтальпией) и энтропией системы в процессе растворения вещества. Существуют три случая таких изменений  [c.250]

    Термодинамика использует обозначения, необходимые для записи уравнений, в которых фигурируют теплота и другие формы энергии. Приведенные ниже символы отражают следующие термодинамические функции — внутренняя энергия, Я — энтальпия (теплосодержание), 5 — энтропия, С — свободная энергия Гиббса, А — свободная энергия Гельмгольца ш — работа, д — теплота. [c.63]

    Энтропия является таким же параметром состояния вещества, как и температура, давление, энтальпия (теплосодержание) и т. п. [c.12]

    ЭНТАЛЬПИЯ (теплосодержание), функция состояния термодинамич. системы Н = и -Ь рь, где V — внутр. энергия, р — давл., V — объем. Для закрытой системы Э.— ха-рактеристич. ф-ция при независимых переменных энтропии и давл. (см. Термодинамические функции). Изменеиие Э. в н,-5обарном процессе равно его тепловому эффекту (отсюда на 1В. теплосодержание ). Этим объясняется, в частности, широкое использование Э. в химии через разность Э. продуктов и исходных в в выражают тепловые эффекты р-ций, в т. ч. теплоты образования, сгорания, а также теплоты фазовых переходов. Значения Э. в-в, отсчитанные от ее значения в стандартном состоянии (обычно 298 К, [c.710]

    Пример 1. Подсчитать изменение внутренней энергии Ш, теплосодержания (энтальпии) А/, энтропии А5 и свободной энер- [c.162]

    Вещество Состояние Изменение теплосодержания л/ (энтальпия Д Н ) Изменение свободной энергии Значение энтропии 5° [c.448]

    Вещество Состояние Изменение теплосодержания Д/ (энтальпия ДН ) Изменение свободной энерги ДР" Значение энтропии, 5  [c.449]

    Интерес к определению тепловых эффектов реакции несколько снизился, когда было установлено, что движущей силой химического процесса является изменение не энтальпии АН, а свободной энергии системы АО. Последняя зависит не только от теплосодержания, но и от энтропии системы Д(3 = ДЯ-ГД5. [c.29]

    Теперь мы имеем возможность перейти к обсуждению движущей силы химических реакций. В разд. 17.5 с использованием понятия энтальпии были рассмотрены энергетические изменения в химических реакциях. По-видимому, протекание таких явно выраженных экзотермических реакций, как образование воды из водорода и кислорода, во многом обусловливается тем, что в результате реакции система отдает энергию своему окружению. Потеря энергии системой описывается как уменьшение ее теплосодержания, или энтальпии, т. е. характеризуется отрицательным значением величины АН системы. Однако, помимо изменений энтальпии, в системе происходят также изменения энтропии, и оба эти фактора — изменение энтальпии и изменение энтропии— определяют движущую силу химической реакции. Во всех случаях, когда в результате реакции должно произойти уменьшение энтальпии и возрастание энтропии, реакция обнаруживает способность к самопроизвольному протеканию. [c.316]


    Живую систему в целом мы должны характеризовать только с точки зрения термодинамики открытых систем, но отдельные реакции можем изучать, пользуясь понятиями классической термодинамики. В этом случае из основных термодинамических констант Е - внутренняя энергия, Я - энтальпия, или теплосодержание, 5 - энтропия и 6 - свободная энергия) для биохимической термодинамики важнейшим является понятие изменения стандартной свободной энергии АС°, поскольку при постоянной температуре и постоянном давлении это понятие позволяет  [c.73]

    Величина Н известна под названием энтальпии или теплосодержания и является термодинамическим потенциалом для энтропии и давления, [c.250]

    На основании значений эффектов дросселирования, найденных по кривым восстановления температуры и определенных по диаграммам состояния теплосодержания движущегося потока (константы энтальпии и энтропии) и его теплоемкости, предприняты попытки с помощью предлагаемого в работе [10] метода выявить теплопроводности и температуропроводность коллекторой, слагающих продуктивную толщу пластов на площади Песчаный-море и некоторых горизонтов Сабунчино-Ра-манинского нефтяного месторождения, и особенно величину температуропроводности, которая является анало- [c.10]

    Следует также учитывать, что мы можем определить на основании ifp по известной формуле lgKp= — ДСг/4,57Г только разницу в свободных энергиях двух стереоизомеров, а затем приближенно рассчитать лишь разницу в теплосодержаниях и энтропиях этих соединений, т. е. фактически речь идет об определении термодинамических параметров (изменения энтальпии и энтропии) реакции изомеризации одного углеводорода в другой. [c.25]

    При растворении и смешении компонентов ПИНС с раство-рителямп также происходит изменение свободной энергии, энтальпии (теплосодержания) и энтропии системы. Для самопро-язвольного смещения компонентов справедливо следующее уравнение изменения энергии  [c.60]

    Метан (химическая формула СН4) - простейший представитель ряда метановых углеводородов (алканов) с обидей формулой , Y 2n+2 состояпдий из одного атома углерода и четырех атомов водорода. Строение молекулы метана можно представить в виде тетраэдра, в центре которого находится атом углерода, а по углам - четыре атома водорода. Тетраэдрическое строение молекулы метана обусловлено 8р-гибридизацией углеродного атома. Расстояние между атомами углерода и водорода равно 1,09 А, тетраэдрический валентный угол равен 109°. Главное отличие метана от всех других углеводородов - это наличие только связи С-Н, средняя энергия которой составляет 99,3 ккал/моль, и отсутствие углеродных связей С-С. Энергия отрыва первого атома Н еш е выше (104,0 ккал/моль). Отношение числа водородных атомов к углероду в метане составляет 4, в этане - 3, в пропане - 2,66, а в высокомолекулярных парафиновых углеводородах приближается к двум, т.е. метан является самым восстановленным из всех углеводородов. Его нахождение в недрах в восстановительной среде так же закономерно, как углекислого газа в окислительных условиях. Исключительное положение метана в земной коре и повсеместное его распространение можно объяснить еш е и тем, что по сравнению со всеми остальными углеводородами он обладает минимальным уровнем свободной энергии (-12,14 ккал/моль), минимальными значениями энтальпии (теплосодержания, -17,89 ккал/моль) и теплоемкости при постоянном давлении (8,536 ккал/моль град), а также максимумом энтропии (44,50 ед. энтропии). Эти свойства в сочетании с очень низким значением критической температуры (-82,4°С) и высоким значением критического давления (4,58 МПа) (табл. 1.1) ставят метан в особое положение среди остальных углеводородов [1.  [c.5]

    Термодинамика использует обозначения, необходимые для написания уравнений, в которых фигурируют те или иные формы энергии. Ниже приводятся символы, которые отражают следующие термодинамические функции Е — внутренняя энергия (иногда ее обозначают [/) Я—-энтальпия (теплосодержание) 5 — энтропия (прёвращение, рассеивание энергии) О — свободная энергия Гиббса (обозначают также буквой Р) W—ра- бота Q — теплота. [c.22]

    В самопроизвольных процессах связь максимальной работы Аспзх с теплосодержанием (энтальпией) АН и энтропией Д5 системы выражается формулой [c.62]

    В предыдущих главах была рассмотрена большая группа коллоидных систем, обладающих развитой физической поверхностью раздела и значительным избытком свободной поверхностной энергии, стремление которой к уменьшению делает эти системы термодинамически неустойчивыми. Благодаря избытку поверхностной энергии, в таких системах образуются ионные и молекулярные адсорбционные слои, которые и обобщают агрегативную устойчивость коллоидным частицам. Легко видеть, что природа устойчивости этих систем резко отличается от устойчивости обычных истинных растворов низколюлекулярных веществ, например, сахара. Хотя каждая молекула сахара в растворе прочно связана, примерно, с 12—15 молекулами воды, нельзя говорить, что молекула сахара окружена адсорбционносольватным слоем воды, так как она не имеет поверхности раздела и не образует фазы водный раствор сахара является однофазной системой. Устойчивость раствора сахара определяется тем, что связь молекул сахара с водой сильнее их взаимной связи в решетке сахара (энергетический фактор) и что растворенные молекулы сахара равномерно распределены во всем объеме раствора (энтропийный фактор). Термодинамически это означает, что состояние раствора сахара, при постоянном давлении и температуре, может быть полностью описано изменением двух функций — теплосодержания или энтальпии ДЯ и энтропии Д5  [c.169]


    Некоторые термодинамические функции для замб щения этилендиамина в ряде комплексов на его гомологи приведены в табл. 16. ]Дзменения энтропии обычно не благоприятны калориметрическое исследование Поулсена и Бьеррума [233] показало, что изменение энтальпии также не благоприятно, и Диккенс [80] подтвердил это. Положительные изменения теплосодержания могут быть обусловлены усилением отталкиваний Н—М-типа, рассмотренных Ирвингом и Гриффитсом [136]. Отрицательный знак приблизительного изменения теплосодержания, найденного по методу температурного коэффициента, по-видимому, не существен, хотя предполагалось, что это значение обусловлено уменьшением оттал- [c.66]

    Другие многочисленные проблемы исследованы пока мало. Обнаружены изменения последовательностей комплексов ионов металлов с общими лигандами [255, 3O0] и последовательностей комплексов разных лигандов с одним и тем же ионом металла [130]. Отношение KjK для комплексов магния с 8-оксихинолин-5-сульфоновой кислотой [255] и салицилальдегидом [186], но-видимому, малочувствительно к содержанию диоксана в среде, хотя было обнаружено увеличение этого отношения для ацетилацетонатных комплексов [300]. Исследования изменений энтропии и теплосодержания производились лишь в немногих случаях. Ли и сотрудники [181а] нашли, что для бмс-глицинатного комплекса Ni(II) в воде в 45%-ном (по весу) диоксане одинаково, в то время как более положительно приблизительно па И энтр. ед. Эти эффекты были объяснены изменением селективной сольватации. Аналогичные небольшие изменения энтальпии при больших изменениях энтропии были обнаружены для комплексов хлорида кадмия в водпо-метанольных смесях [296]. Однако сопоставление данных для комплексов производных 8-оксихинолина [151, 294] в воде и 50%-пом диоксане указывает на наличие существенных изменений энтальпий комплексообразования, а не энтропийных членов. [c.71]


Смотреть страницы где упоминается термин Энтальпия (теплосодержание) и энтропия: [c.106]    [c.66]    [c.217]    [c.336]    [c.334]    [c.329]    [c.258]    [c.215]    [c.410]    [c.775]    [c.855]    [c.775]    [c.855]    [c.5]    [c.775]    [c.855]    [c.856]    [c.148]    [c.359]    [c.225]    [c.51]    [c.29]   
Смотреть главы в:

Природный газ -> Энтальпия (теплосодержание) и энтропия




ПОИСК





Смотрите так же термины и статьи:

Теплосодержание

Энтальпия в Энтропия

Энтальпия теплосодержание



© 2025 chem21.info Реклама на сайте