Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистидин, триптофан и метионин

    Человеческое тело может синтезировать 12 из 20 аминокислот. Остальные восемь должны поступать в организм в готовом виде вместе с белками пищи, поэтому они называются незаменимыми. Незаменимые аминокислоты включают изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин и (для детей) гистидин. При ограниченном поступлении такой аминокислоты в организм она становится лимитирующим веществом при построении любого белка, в состав которого она должна входить. Если такое случается, то единственное, что может предпринять организм, - это разрушить собственный белок, содержащий эту же аминокислоту. [c.262]


    В состав природных белков обычно входят следующие аминокислоты аланин, аргинин, аспарагин, аспарагиновая кислота, цистеин, глицин, глутаминовая кислота, гистидин, глутамин, изолейцин, лейцин, лизин, метионин, оксипролин, пролин, серии, тирозин, треонин, триптофан и валин. Восемь аминокислот организм животных не может синтезировать, поэтому их называют биологически незаменимыми аминокислотами. К ним относятся фенилаланин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и валин. Эти аминокислоты должны регулярно и в нужном количестве поступать в организм вместе с пищевыми продуктами. Недостаток одной из этих аминокислот в пище может стать фактором, лимитирующим рост и развитие организма. В табл. 15 показано химическое строение незаменимых аминокислот и рекомендуемое для человека количество их в сутки. [c.155]

    Все природные а-аминокислоты делятся на незаменимые которые поступают в организм только из внешней среды (ва-лин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин), и заменимые, синтез которых происходит в организме. Исходными веществами для биосинтеза [c.51]

    По полярности боковой цепи Я различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты — валин, лейцин, изолейцин, пролин, метионин и фенилаланин. К полярным аминокислотам причисляют серин, треоиин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как нейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка. [c.17]

    При использовании в качестве растворителя смеси н-бутанола, уксусной кислоты и воды (4 1 5) расположение аминокислот по направлению движения растворителя (сверху вниз) следующее цистин, лизин, аргинин, гистидин, аспарагиновая кислота, серин (три последние аминокислоты имеют вид тесно сближенных пятен) глутаминовая кислота, треонин, аланин, пролин, тирозин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин (последние три аминокислоты часто имеют вид тесно сближенных пятен). [c.113]


    Фотодинамическое действие реализуется не через разрывы пептидных связей, а прежде всего через окисление остатков таких аминокислот, как гистидин, триптофан, тирозин, метионин, цистеин, причем наиболее легко окисляется гистидин и триптофан. Варьируя красители и характеристики среды, можно достичь более или менее избирательной деструкции определенных аминокислот. Например, гистидин разрушается при pH 6 (азот ими-дазола ионизирован), тирозин — при рН>10 (ионизирована гидроксильная группа фенольного кольца). Как правило, экспонированные иа поверхности белковой глобулы аминокислоты разрушаются более эффективно, чем расположенные в ее сердцевине. При измерении методом флеш-фотолиза переходных спектров поглощения тирозина и триптофана Гросвейнером было показано, что, как и УФ-облучение, видимый свет в присутствии эозина (фотодинамический эффект) приводит к образованию одних и тех же лабильных промежуточных продуктов — аланин-феноксильных и 3-индольных свободных радикалов соответственно. Конечными стабильными продуктами фотоокисления триптофана являются кинуренины и меланины, цистина — цистеиновая кислота гистидин и тирозин дают большой набор продуктов. [c.346]

    Аминокислоты незаменимые — необходимы для жизнедеятельности организма, но не синтезируются в нем, а поступают с пищей. К ним относятся лейцин, лизин, валин, метионин, фенилаланин, гистидин, триптофан, треонин, изолейцин, аргинин. [c.23]

    Белки свеклы имеют кислотные свойства (точка коагуляции при pH 3,5), содержат больше кислых аминокислот — глутаминовую, аспарагиновую и др. Они гидролизуют с образованием низкомолекулярных пептидов и аминокислот аланин- валин, гликокол, лейцин, изолейцин, фенилаланин, -аминомасляная, тирозин, серии, треонин, цистин, метионин, пролин, триптофан, аспарагиновая, глутаминовая, гистидин. [c.6]

    При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма), а также их производных. Среди них есть такие, которые не синтезируются или синтезируются в недостаточном количестве самим организмом и вводятся в организм вместе с пищей эти вещества называются незаменимыми аминокислотами. К йим относятся (указаны в порядке уменьшающейся для человека потребности) лейцин, лизин, валик, фенилаланин, метионин, гистидин, триптофан, аргинин, треонин, изолейцин. [c.549]

    Б. Гистидин, триптофан и метионин [c.258]

    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

    Пытаясь найти некоторые общие принципы, лежащие в основе аминокислотного состава белков, Бейли [101] построил ряд гистограмм, отражающих аминокислотный состав двух десятков белков. В целом Бейли не был удовлетворен результатами этой попытки, но ему все же удалось сделать некоторые заключения Нанример, он указал на щирокое распространение валина, лейцина и изолейцина и отметил, что белки обычно содержат меньще изолейцина, чем лейцина. В белках обычно присутствуют фенилаланин, пролин, тирозин, аспарагиновая кислота, глутаминовая кислота и цистин, тогда как триптофан, метионин, лизин, гистидин, аргинин, глицин и аланин встречаются реже. [c.25]

    Гидролиз пищевых продуктов. Чаще всего при определении аминокислотного состава пищевых продуктов используют кислотный гидролиз в 6 н. растворе НС1, проводимый в запаянных ампулах при температуре ПО—120°С в продолжение 22—24 ч [38, 48, 61]. Необходимо отметить, что гидролиз — наиболее несовершенная операция в аминокислотном анализе, так как в белках содержится несколько лабильных аминокислот (треонин, серин, цистин, метионин, гистидин, триптофан, тирозин), которые, по мнению многих авторов, заметно разрушаются даже при кратком кислотном гидролизе другие (валин, лейцин, изолейцин), наоборот, с трудом высвобождаются из полипептидных цепей при длительных сроках гидролиза (в течение 70—80 ч). Поэтому для определения истинных количеств аминокислот в белках при особо точных исследованиях гидролизуют несколько (3—4) проб белка при различных сроках (20—80 ч). Путем построения графиков зависимости количества аминокислот от длительности гидролиза находят истинное значение содержания лабильных аминокислот, экстраполируя кривую к начальному моменту гидролиза. [c.190]


    Все а-аминокислоты, входящие в состав белков, разделяются на заменимые и незаменимые. Аминокислоты, не синтезирующиеся в живом организме, получили название незаменимых аминокислот. Для человека и всех видов животных незаменимыми являются следующие девять аминокислот лизин, треонин, триптофан, метионин, гистидин, фенилаланин, лейцин, валин и изолейцин. [c.5]

    Хотя к настоящему времени изучен аминокислотный состав более чем 50 белков, однако полученные результаты не позволяют сделать сколько-нибудь щироких обобщений. Правда, сопоставление этих результатов позволяет сказать, что наиболее щироко в белках распространены валин, лейцин и изолейцин, причем изолейцина содержится меньше, чем лейцина. В белках обычно присутствуют фенилаланин, пролин, тирозин, аспарагиновая и глютаминовая кислоты и цистин, тогда как триптофан, метионин, лизин, гистидин, аргинин, глицин и аланин встречаются реже. Однако эти общие положения не всегда применимы к отдельным специфическим белкам, обладающим рядом особенностей. [c.61]

    Цистин. ... Гистидин+ЛИЗИН. Аргинин. ... Аспарагиновая кис.тота Серин. . , . Глицин. . , . Глутаминовая кислот Треонин. ... Аланин. ... Пролин. ... Тирозин. ... Триптофан Метионин-]-валин Фенилаланин Лейцин- -изолейцин,  [c.67]

    Цистеин. . . Триптофан. . Метионин. . . Лизин. . . . Гистидин. . . Аргинин. . . Оксипролин. . Пролин. . . . Аспарагиновая [c.115]

    После окончания разделения хроматограмму высушивают на воздухе и проявляют раствором нингидрина путем опрыскивания из пульверизатора. З-атем нагревают 15—20 мин при 60° С в термостате или сушильном шкафу. Расположение аминокислот сверху вниз по направлению движения растворителя следующее цистин, лизин, аргинин, гистидин, аспарагиновая кислота, серии (три последние аминокислоты располагаются в виде тесно сближенных пятен) глутаминовая кислота, треонин, аланин, пролин, тирозин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин (последние три аминокислоты также часто располагаются в виде тесно сближенных пятен). [c.301]

    В связи с этим аминокислоты делят на заменимые и незаменимые. Те аминокислоты, которые не синтезируются в организме и поступают только с пищей, называются незаменимыми. К ним относятся лизин, лейцин, изолейцин, метионин, фенилаланин, триптофан, треонин, валин, гистидин, аргинин. [c.414]

    Г.К. называют вырожденным, поскольку 61 кодон кодирует всего 20 аминокислот. Поэтому почти каждой аминокислоте соответствует более чем один кодон. Вырожден-ность Г. к. неравномерна для аргинина, серина и лейцина она шестикратна (т.е. для каждой из этих аминокислот имеется по шесть кодонов), тогда как для мн. др. аминокислот (тирозина, гистидина, фенилаланина и др.) лишь двукратна. Две аминокислоты (метионин н триптофан) представлены единств, кодонами. Кодоны-синонимы почти всегда отличаются друг от друга по последнему из трех нуклеотидов, тогда как первые два совпадают. Т. обр., код аминокислоты определяется в осн. первыми двумя буквами . Вырожденность Г. к. имеет важное значение для повышения устойчивости генетич. информации. [c.519]

    При анализе данных табл. 1.4 виден ряд закономерностей. На долю дикарбоновых аминокислот и их амидов в большинстве белков приходится до 25-27% всех аминокислот. Эти же аминокислоты вместе с лейцином и лизином составляют около 50% всех аминокислот. В то же время на долю таких аминокислот, как цистеин, метионин, триптофан, гистидин, приходится не более 1,5-3,5%. В протаминах и гистонах отмечено высокое содержание основных аминокислот аргинина и лизина, соответственно 26,4 и 85,2% (см. Химия простых белков ). [c.40]

    Уже из соотношения 64 кодона на 20 аминокислот следует, что код должен быть вырожденным, т. е. одной аминокислоте должно соответствовать несколько кодонов. Как видно из табл. 5.2, распределение аминокислот по кодонам весьма неравномерно. Трем аминокислотам — лейцину, серину и аргинину — соответствует по шесть кодонов, пяти аминокислотам — глицину, аланину, валину, пролину и треонину — по четыре, изолейцину — три кодона, лизину, аспартату, аспарагину, глутамату, глутамину, фенилаланину, тирозину, гистидину и цистеину — по два, а метионину и триптофану — по одному кодону. Три кодона — ПАА, НАС и иСА [c.172]

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные (20 аминокислот), которые входят в состав белков. Все протеиногенные аминокислоты представляют собой -формы. Из них восемь являются незаменимыми, они синтезируются только растениями и не синтезируются в организме человека, поэтому их получают с пищей. К ним относятся валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, иногда в их число включают гистидин и аргинин, которые не синтезируются в организме ребенка. [c.10]

    В состав белка дрожжей входят почти все необходимые для нормального роста животных и птиц аминокислоты, как-то тирозин, триптофан, метионин, треанин, аргинин, гистидин, лизин, изолейцин, лейцин и валин. [c.335]

    Пизано и Бронзерт [81] по летучести и отношению к различным типам НЖФ разделили ФТГпроизводные аминокислот на три группы. К первой группе авторы отнесли аланин, глицин, валин, лейцин, изолейцин, метионин, пролин, фенилаланин. Во вторую группу выделены глутамин, тирозин, гистидин, триптофан и аспарагин, в третью — цистеиновая кислота, З-карбоксиметилцистеин, лизин, серин, треонин, глутаминовая и аспарагиновая кислоты. [c.57]

    В динамике накопления отдельных аминокислот у разных видов остролодочников наблюдаются следующие тенденции. Содержание свободных аминокисло 1 снижается от фазы бутонизации к фазе плодоношения. Особенно ярко это проявляется на содержании серина, глицина, глутаминовой кислоты, аланина, пролина, тирозина. Исключение составляет цистин, количество которого возрастает от начальных фаз развития к конечным (см. табл. 5). Рассматривая аминокислоты, входящие в состав белка, следует отметить следующее. Их качественный состав не зависит ни от вида, нн от органа, ни от фазы развития, ни от места произрастания. В условиях Новосибирска, как и в Юго-Восточном Алтае, в белках были обнаружены следующие аминокислоты цистин, гистидин, лизин, аргинин, аспарагиновая кислота, серин, глицин, глутаминовая кислота, треонин, аланин, пролин, тирозин, триптофан, метионин- -валин, фенилаланин, лейцин+изолейцин, что свидетельствует о постоянстве качественного состава аминокислот белка у представителей рода остролодочник. [c.73]

    Аминокислоты, конфигурация. Характерной особенностью приходных аминокислот является наличие в их молекуле асимметрического центра, эти аминокислоты могут существовать в двух оптически активных формах (Ь и О). В состав белков входят Ь-аминокислоты. Символы Ь и О применяют для обозначения конфигурации а-атома углерода. Для указания направления оптического вращения плоскости используют знаки (+) — правовращающий и (—) — левовращающий. Ряд а-а шно-кислот (гистидин, лейцин, метионин, цистеин, треонин, фенилаланин, тирозин, пролин, триптофан, оксипролин, серин) в нейтральных водных растворах — левовращающие. В то же время среди а-аминокислот есть и правовращающие (алавив, валин, изолейцин, аспарагиновая кислота, глутаминовая кислота, аргинин, лизин). [c.8]

    За первым сообщением об изучении триметилсилильных производных аминокислот, появившимся в 1960 г. [188], последовало их систематическое исследование [189, 190]. Трудности, с которыми приходится сталкиваться при получении этих производных, обусловлены в основном низкой реакционной способностью аминогрупп и нестабильностью образующихся триметил-силазанов, которые весьма чувствительны к следовым количествам воды. Согласно данным Герке и сотр. [191, 192], воду лучше всего удалять в несколько приемов путем ее азеотропной отгонки с дихлорметаном. Сложность превращения аминогрупп в силильные производные, в результате которого образуется набор продуктов, стимулировала изучение действия разнообразных силилирующих агентов в различных условиях. Установлено, что в зависимости от условий реакции некоторые аминокислоты, а именно глицин, со-аминокислоты, аргинин, гистидин и триптофан, дают на хроматограммах двойные пики [189, 190, 192]. Глутаминовая кислота может образовать 2-пирролидон-5-карбо-новую кислоту. Хранение триметилсилильных производных аминокислот в присутствии силилирующих агентов в плотно закрытой посуде должно было бы обеспечить их устойчивость по меньшей мере в течение недели [191, 192], однако известно, что концентрация производных гистидина существенно уменьшается уже через 2 ч [194], а аргинин, у-аминомасляную кислоту, цитруллин, глутамин, гистидин, сульфоксид метионина и таурин вообще невозможно превратить в стабильные производные [183]. Поэтому, как показывает наш опыт, триметилсилильные соединения следует хроматографировать непосредственно после охлаждения реакционной смеси. [c.70]

    Первичные алифатические амины, диамины и аралкиламины с хлор-ангидридом кислоты (VI) реагируют легко и дают положительную реакцию — фиолетовое окрашивание. Положительную реакцию дают также многие одноосновные аминокислоты (гликоколь, валин, норвалин, лейцин, норлейцин, пзолейцин, серии, р-фенилаланин, тирозин, гистидин, триптофан, р-аланин, метионин), одноосновные диаминокислоты (орнитин, ли- [c.264]

    Белки в питательном рационе вполне югyт быть заменены аминокислотами. Оказалось также, что часть необходимых аминокислот животные могут вырабатывать сами из других азотосодержащих органических соединений. Другую часть аминокислот организм синтезировать не в состоянии, они должны поступать в готовом виде, в составе белков пищи. Такие аминокислоты получили название незаменимых. К ним относятся лизин, триптофан, фенилаланин, валин, метионин, треонин, лейцин, изолейцин, гистидин, аргинин. Белковая пища должна покрывать не только общую потребность в аминокислотах, но и содержать необходимые количества незаменимых аминокислот. При недостаточном поступлении этих аминокислот нормальное существование организма нарушается. Так, например, белок кукурузы зеин не содержит лизина и почти не содержит триптофана. В опытах с животными, которые получали с пищей один только этот белок, наблюдалась, несмотря на обильное кормление, потеря веса. Отсутствие в пище триптофана может быть причиной тяжелого заболевания глаз — катаракты. [c.332]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    При необходимости описать строение более длинных молекул можно также воспользоваться однобуквенньпл кодом, в котором каждой аминокислоте присвоена одна заглавная буква латинского алфавита аланин - А, аспарагин - N, аспарагиновая кислота О, аргинин - Я, валин - V, гистидин - Н, глицин - О, глутамин О, глутаминовая кислота - Е, изолейцин - I, лейцин - Ь, лизин - К, метионин - М, пролин - Р, серии - 8, тирозин - V, треонин Т, триптофан - фенилаланин - Р, цистеин " С. С использованием этого кода вместо громоздкой структурной формулы, написанной в начале страницы, можно записать УЯМ. [c.54]

    В животных и растительных организмах в настоящее время обнаружены следующие а-аминокислоты аланин, аргинин, аспарагиновая кислота, цистеин, глутаминовая кислота, глицин, гистидин, оксипролин. ИЧГ.ПРЙЦИН, лейцин, лизин, метионин, фенилаланин, пролин, сепии треонин, триптофан, тирозин, валин, [c.78]


Смотреть страницы где упоминается термин Гистидин, триптофан и метионин: [c.128]    [c.174]    [c.135]    [c.111]    [c.108]    [c.98]    [c.210]    [c.289]    [c.248]    [c.24]    [c.222]    [c.364]    [c.251]    [c.41]    [c.224]    [c.324]    [c.79]   
Смотреть главы в:

Механизмы биоорганических реакций -> Гистидин, триптофан и метионин




ПОИСК





Смотрите так же термины и статьи:

Гистидин

Метионин

Триптофан



© 2024 chem21.info Реклама на сайте