Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моделирование трубопроводов

    В критерий Галилея пе входит скорость потока, а критерий Архимеда отражает разность плотностей жидкости в двух различных точках потока, т. е. при естественной конвекции. Обычно одновременное равенство различных критериев подобия в изучаемых потоках невозможно, и поэтому прн моделировании учитывают лишь те критерии, которые отражают влияние основных сил, действующих в потоке. Так, при перекачивании жидкости насосом по трубопроводу влияние силы тяжести можно не учитывать и исключить поэтому из рассмотрения критерий Фруда. Обычно общий вид зависимости при вынужденном движении жидкости по трубопроводу имеет вид [c.49]


Рис. Х-2. Моделирование реального времени запаздывания в трубопроводе сочетанием чистого времени запаздывания и перемешивания в емкости-. Рис. Х-2. <a href="/info/1284850">Моделирование реального</a> <a href="/info/1262761">времени запаздывания</a> в трубопроводе сочетанием чистого <a href="/info/1262761">времени запаздывания</a> и перемешивания в емкости-.
    МОДЕЛИРОВАНИЕ ПОВЕРХНОСТИ ПРИ ОЦЕНКЕ ВЛИЯНИЯ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ ФОРМЫ ВМЯТИН В СТЕНКЕ ТРУБОПРОВОДА [c.140]

    Высокая точность моделирования в нашем случае ассоциируется с максимально возможным удовлетворением современным требованиям к достоверности оценок параметров функционирования трубопроводных и канальных систем, предъявляемым в отраслях топливно-энергетического комплекса (ТЭК), а также соответствующими надзорными организациями. Требование высокой точности на практике приводит к тому, что при создании моделей сетей трубопроводов и каналов с открытым руслом (рек) их разработчики должны стремиться минимизировать погрешность между соответствующими расчетными оценками и фактическими параметрами реальных физических процессов. Минимизация таких погрешностей должна осуществляться за счет повышения адекватности математических моделей в результате минимизации глубины необходимых упрощений и допущений, принимаемых при численном моделировании трубопроводных и канальных сетей. Здесь следует особо подчеркнуть, что при построении математических моделей повышенной точности и высокоэффективных методов их численного анализа необходимо соблюдать баланс между затратами на их разработку и ценностью информации, получаемой в результате их использования. Игнорирование данного условия может привести к необоснованным и некомпенсируемым затратам на моделирование трубопроводов или каналов с открытым руслом (рек). [c.14]

    Следует отметить, что авторы монографии, к сожалению, не имели возможности проведения натурных экспериментов для проверки корректности применения той или иной формулы расчета функции Я = Я (Ке, Д). Отличие значений параметра Я, вычисленных по формуле Адамовича, от значений, полученных по формулам Самойленко, возможно, объясняется погрешностями опытных данных Л.А. Самойленко и/или неточностью их аппроксимации. Поэтому, с этой точки зрения, модифицированная составная расчетная зависимость (П2.33, П2.34) и единая формула Адамовича равноправны. Однако формула Адамовича обладает двумя главными недостатками с точки зрения ее возможного применения при численном моделировании трубопроводов, а именно  [c.624]


    Необходимый уровень достоверности оценки технологического режима эксплуатации участка трубопровода не может быть достигнут при рещении обратной задачи по какому бы то ни было отдельно взятому параметру. Для выбранного участка трубопроводной сети доступна лишь ретроспектива значений расхода, перепада давлений и температур начала и конца трубопровода. При столь ограниченном объеме информации оценить распределение параметров по длине участка не представляется возможным, однако провести косвенную оценку осредненных по длине "эффективных" значений возможно. Общие положения методики диагностирования технологического состояния и оценки "эффективных" значений сформулированы в [1] и подразумевают моделирование процесса для получения эталона сравнения (КОП - "заведомо верной величины"). [c.164]

    Здесь предлагается математическое моделирование различных аспектов работы неизотермического трубопровода, основанное на численном решении классических нестационарных нелинейных уравнений движения и энергии, описывающих ламинарное течение неньютоновских жидкостей, а турбулентный режим описывается при помощи полуэмпирических формул Блазиуса, Кутателадзе и их модификагщй. Одним из граничных условий принята гидравлическая характеристика одного или двух, трех, установленных последовательно, насосов. При этом удалось учесть различие в статических и динамических реологических свойств перекачиваемой жидкости. [c.136]

    Для моделирования изменения удельной теплоотдачи с погонного метра трубы в зависимости от толщины слоя АСПО используем хорошо зарекомендовавший себя подход Лейбензона [3] и эмпирические зависимости Абрамзона [3] и Кутателадзе [2] (кривая 1). Но в отсутствии достоверных данных по режиму течения нефти по трубам возникает необходимость использования двух моделей - ламинарного (кривая 2) и структурированного течения нефти (кривая 3). Для прогнозирования толщины АСПО на стенках трубопровода используем зарегистрированные значения перепада давления на концах трубопровода по диспетчерским данным (ДР с [4.0... 13.5], атм). По трубопроводу перекачивается нефть с содержанием парафина более 20%. Оценка осредненного по длине диаметра проходного сечения в предположении ламинарного движения нефти лежит значительно левее [0,19...0,27], что ставит под сомнение сущест- [c.165]

    Моделирование коррозионных повреждений трубопроводов по результатам внутритрубной ультразвуковой дефектоскопии [c.109]

    Для повышения эффективности действия защитных установок и обоснованного определения места подключения их к трубопроводу в последнее время применяется метод электрического моделирования системы рельсовая сеть — земля — сеть подземных сооружений . Отображение на моделях не только качественной, но и количественной картины позволяет обосновывать проектное решение электрозащиты для вновь строящихся подземных сооружений. [c.182]

    Новые технологии трубопроводного транспорта энергоресурсов на основе прогнозного моделирования нештатных ситуаций и управления безопасностью объектов магистральных трубопроводов созданы в единственном в России Институте проблем транспорта энергоресурсов (руководитель — академик АН РБ А. Г. Гумеров). [c.11]

    Благодаря определенной независимости уравнений (12-18), для решения каждого из них была выбрана своя схема численного моделирования. Система нелинейных нестационарных уравнений решается при помощи конечно-разностного метода, основная сложность которого заключается в нахождении области определении решения уравнения (14) при условии, если рассматриваемая жидкость обладает предельным напряжением сдвига. При этом в зависимости от температурных условий трубопровод может работать полным сечением, а может возникнуть застойная зона и ядро течения [1]. [c.155]

    Моделирование остановки перекачки участка трубопровода, т. е. процесса остывания, проводится при помощи нестационарного уравнения энергии (12) с и в граничном условии (18) заменяется на аг, учитывающее аккумулирующие тепловые свойства окружающей среды, [c.156]

    Моделирование процесса пуска после остановки показало [3], что движение неньютоновской жидкости в начальный момент времени начинается струйкой небольшого размера в районе оси трубы, где жидкость имеет наибольшую температуру. Постепенно, если достаточно подаваемой в трубопровод кинетической и тепловой энергии, в движение вовлекаются соседние слои жидкости и, таким образом, участок трубопровода запускается в эксплуатацию. Это позволило с хорошей точностью определять один из основных технологических параметров нефтепровода, работающего по технологии горячая перекачка , такой, как время безопасной остановки работы в холодное время года. [c.157]

    Математическое моделирование режимов работы трубопровода производится на основе численного решения нестационарных нелинейных уравнений движения и энергии с неопределенной областью решения. Основой построения уравнений движения и энергии служит аппроксимационная реологическая модель, при помощи которой можно сравнительно точно описать поведение жидкостей при различных температурах. [c.71]


    Элементы переключения. Программой предусматривается автоматическое выполнение логических операций. Предположим, например, что при математическом моделировании технологического процесса в модель необходимо ввести мгновенное перекрытие одного из двух параллельных трубопроводов (С или D) с тем, чтобы изменить направление потока жидкости из трубопровода А (рис. П1-6). [c.45]

    Пример 1У-2. Моделирование емкости с учетом влияния уровня жидкости в ней на расход, В этом случае (рис. 1У-6) поток идет через установленный на входе вентиль из системы с давлением Р . Давление после входного вентиля равно Ра и зависит от уровня Я и давления Р Отбираемый поток ( >2 проходит через установленный на отводном трубопроводе вентиль, давление после которого равно Р . На потоки и оказывает влияние изменение уровня Я в емкости, поэтому взаимосвязанные расходы так же, как и уровень, становятся зависимыми переменными, в то время как независимыми переменными (кроме времени) остаются лишь давления 1, Р и Р. . Всего в этой физической системе имеются четыре зависимые переменные величины Ql, Q , Я и Р для их нахождения, как мы заметили ранее, требуется составить четыре уравнения. Первым является то же самое уравнение материального баланса, что и в предыдущем примере  [c.65]

    Пример VII- . Моделирование системы, состоящей из трех последовательно соединенных емкостей, заполняемых газом. Предположим, что имеется система, состоящая пз трех емкостей объемом 1, Т о и Уд, соединенных между собой трубопроводами [c.138]

    Пример УП-2. Моделирование движения жидкости в трубопроводе, соединяющем два резервуара Вода протекает по короткому трубопроводу, связывающему два резервуара (рис. VI1-3). Будем считать, что скорость ее движения во всех точках трубопровода одинакова, т. е. что мы имеем дело с жесткой водяной струей. [c.139]

    Пример VH-3. Моделирование перемещения жидкости насосами в системе трубопроводов. Насос, расположенный несколько выше резервуара А, нагнетает из него воду с большой скоростью по наклонному трубопроводу 1 большого диаметра на высоту Яц а затем по трубопроводу 2 поступает в резервуар В (рис. VII-6). [c.140]

    Пример 1Х-2. Моделирование перемещения газа в трубопроводе. Пусть по трубопроводу диаметром О перемещается сжатый га.ч. Объемный расход газа обозначим через Q, массовый — через т, давление — Р, а плотность газа — р. [c.184]

    Построить математическую модель для определения величины давления на входе в питающий трубопровод, обеспечивающего необходимые расходы газа. При моделировании предположить, что коэффициенты пропускной способности вентилей известны и равны /Св,. [c.216]

    Построить математическую модель системы регулирования, которая позволила бы произвести эксперименты на вычислительной машине, для определения настройки регулятора расхода при заданном диапазоне возмущений по расходу вещества А. При моделировании принять, что диаметры В всех трубопроводов и давления Р в них равны между собой, а расстояние от точки соединения трубопроводов до форсунки реактора равно м. [c.264]

Рис. 7. Моделирование процесса разрушения участка трубопровода при наличии дефектов в виде коррозионных язв (а), фотофафия разрушенного участка трубы (б). Рис. 7. <a href="/info/146518">Моделирование процесса</a> разрушения участка трубопровода при наличии дефектов в <a href="/info/1464866">виде коррозионных</a> язв (а), фотофафия разрушенного участка трубы (б).
    Данная установка позволяет осуществлять всестороннее и полное моделирование действительных условий эксплуатации подземных, надземных и наземных трубопроводов и комплексную оценку состояния покрытия  [c.128]

    Дпя моделирования распределения тока и потенциала по трубопроводу предполагается, что катодные участки находятся на равных расстояниях до обе стороны коррозионной язвы-и электрически заземлены, т.е. замкнуты с анодным участком. В этом случае с учетом законов Кирхгофа и Ома можно получить простое соотношение  [c.44]

    Во втором разделе приводятся современные представления о механизме КР, методы лабораторного моделирования этого явления, описаны процессы, протекающие под отслоившейся изоляцией при катодной защите магистральных трубопроводов, освещены вопросы влияния среды и группы прочности стали на протекание КР. Особое внимание уделено электрохимическому поведению стали в очаговых зонах разрушения магистральных газопроводов. Впервые приведены новые подходы к предотвращению КР. [c.5]

    В работе [24] экспериментально показана возможность моделирования процесса трубной деэмульсации в лабораторной мешалке с цилиндрическим ротором. Однако проводить пересчет полученных результатов, приравнивая числа Рейнольдса для мешалки и трубопровода, нельзя. Хотя Не и характеризует уровень турбулентности, он может служить критерием подобия только для геометрически подобных потоков, поскольку несет в себе некоторый произвол в выборе отдельных параметров. В самом деле Re = wL/v, где I я и выбираются произвольно. Так, для трубопровода за L обычно принимают либо диаметр трубы, либо его радиус, за и— среднюю по сечению скорость, хотя можно было принять и максимальную в данном сечении скорость движения (осевую). По-раз-1 0му можно делать выбор характерных Ь н и для мешалки. От выбора этих параметров зависит значение числа Ке. [c.45]

    Использование электроаналоговой модели для расчета систем обвязок поршневых компрессоров. Кривая частотной характеристики (или ее часть) для трубопроводных систем может быть легко и быстро найдена с помощью модели, путем возбуждения моделированного трубопровода генератором частоты и измерения напряжения в какой-либо его точке. При этом вертикальная шкала представляет амплитуду входного сигнала и строится в зависимости от частоты. Расположение резонансных частот и форма кривой частотных характеристик имеют важное значение для проектирования трубопроводов и часто являются первым шагом на пути их оценки. [c.206]

    Учет гидравлического сопротивления. Этим элементом условно учитываются все потери гидравлического напора за счет трения жидкости о стенки трубопровода, потери на вентилях, задвижках й т. д. Соответствующий фрагмент диаграммы связи является сочетанием 1-структуры с В-диссипативным элементом, на котором аадается нелинейное соотношение между перепадом давленйя P = Р — Рз и расходом 4 через гидравлическое сопротивление. При этом следует иметь в виду, что почти все данные но коэффициентам сопротивления относятся к установившимся потокам. Поэтому при изучении и моделировании неустановивщихся режимов гидравлических цепей не исключена коррекция этих данных по результатам эксперимента. [c.169]

    ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ РАБОТЫ НЕИЗОТЕРМИЧЕСКОГО ТРУБОПРОВОДА, ПЕРЕКАЧИВАЮЩЕГО РЕОЛОГИЧЕСКИ СЛОЖНЫЕ ЖИДКОСТИ [c.135]

    Компьютерное моделирование поврежденного участка позволило предсказать с высокой точностью поведение участка трубопровода при действии внутреннего давления и наличии дефекта, что и было подтверждено в дальнейшем при обследовании р 1зрушенного участка трубы. [c.96]

    Шутов А. А. Численное моделирование процессов работы неизотермического трубопровода, перекачивающего реологически сложные жидкости // Методы кибернетики химико-технологических процессов (КХТП-У-99) Тез. докл. V Междунар. науч. конф.— Уфа УГНТУ, 1999.—Том 2. кн. II —С. 135-137. [c.159]

    Шутов А. А. Численное моделирование процесса пуска после остановки неизотермического трубопровода // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов Сб. науч. тр,— Уфа Транстэк, 1997.— С. 22-30. [c.159]

    Эффективным методом определения параметров пульсирующего газового потока в системах перекачки газа с поршневыми компрессорами является метод электрического моделирования [б]. В настоящее время разработаны методы моделирования газодинамических процессов в трубопроводах на одномерных сеточных электрических моделях, а также процессов в пор невых компрессорах на электричеоких схемах с нелинейными элемента1ми [5]. Характеристики неоднородностей трубопроводов (участков поворотов, буферных емкостей, мас-ловлагоотделителей и т. п.) могут быть определены на многомерных сеточных электрических моделях. [c.36]


Библиография для Моделирование трубопроводов: [c.354]   
Смотреть страницы где упоминается термин Моделирование трубопроводов: [c.221]    [c.221]    [c.223]    [c.46]    [c.46]    [c.140]    [c.18]    [c.72]   
Смотреть главы в:

Аппаратура и механизмы гидро,-пневмо- и электроавтоматики металлургических машин -> Моделирование трубопроводов




ПОИСК





Смотрите так же термины и статьи:

Выбор средств моделирования НДС трубопроводов

Моделирование взаимодействия трубопровода и прилегающего грунта

Моделирование коррозионных повреждений трубопроводов по результатам внутритрубной ультразвуковой дефектоскопии

Моделирование пожаров разлития горючих жидкостей при разрушении трубопроводов или резервуаров хранения

Моделирование течений в однониточном трубопроводе

Моделирование течений в разветвленном трубопроводе

О моделировании течений в разветвленном трубопроводе, транспортирующем жидкости

Определение параметров инженерных моделей взаимодействия трубопровода с грунтом по результатам численного моделирования Алешин

Пример реализации основных принципов высокоточного моделирования трубопроводных систем при верификации проектных решений для магистральных трубопроводов

Розенберг Г.Д. Моделирование движения газоконденсатной (газовой) смеси при полном разрыве трубопровода



© 2025 chem21.info Реклама на сайте