Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Несколько d-электронов

    Атом лития состоит из ядра с зарядом + 3 (Z = 3) и трех электронов. Первая энергия ионизации, ЭИ(, атома с несколькими электронами представляет собой энергию, необходимую для удаления одного электрона. Для лития эта энергия отвечает процессу [c.350]

    Хотя отношение заряда электрона к его массе было измерено Томсоном в 1897 г., абсолютную величину заряда электрона удалось установить только в 1911 г., когда Роберт Милликен (1868-1953) поставил остроумный опыт, иллюстрируемый рис. 1-13. Он впрыскивал пульверизатором мельчайшие капельки масла между горизонтально расположенными пластинами конденсатора и затем облучал эти капельки рентгеновскими лучами. Возникающие при ионизации воздуха электроны прилипали к капелькам масла, на которых таким образом возникало один, два или несколько электронных зарядов. Милликен сначала измерял скорость свободного падения заряженных капелек в воздухе с известной вязкостью. Затем он измерял напряжение, которое необходимо приложить к пластинам конденсатора, чтобы заставить капельки масла неподвижно повиснуть между пластинами. Он вычислил, что заряд на любой капельке масла всегда представляет собой целое кратное величины 1,602 10 Кл, и пришел к правильному выводу, что это и есть заряд 1 электрона. [c.50]


    Нейтроны, проходя через вещество, сталкиваются и взаимодействуют только с ядрами атомов и могут быть поглощены ими, а элемент, таким образом, будет превращен в изотоп. В результате распада ядер этих изотопов могут образоваться новые элементы. Если нейтрон не захватывается ядром, то он может выбить атом из молекулы. Скорость выбитого атома может быть настолько большой, что он потеряет один или несколько электронов. При небольших энергиях нейтронов скорость выбитого атома невелика, и он сохраняет свою электронную оболочку, хотя последняя может придти в возбужденное состояние. [c.260]

    А. Введение. Согласно квантовой теории Планка любое поглощение энергии атомом или молекулой приводит к переходу одного или нескольких электронов в состояние с более высокой энергией. При возвращении в низшее состояние электрон испускает фотон — квант электромагнитного излучения, энергия которого, Дж, равна  [c.192]

    Расчет электронной структуры соединений, содержащих несколько электронов и ядер, на основе уравнения Шредингера наталкивается на математические трудности его решения. В связи с этим широкое развитие и распространение получили приближенные методы решения уравнения Шредингера. Большие успехи квантовомеханического описания сложных соединений достигнуты в настоящее время вследствие применения полуэмпирических методов, которые основаны на весьма общих теоретических соображениях и включают параметры, оцениваемые экспериментально с достаточной степенью точности. [c.51]

    Окислением называют реакцию, связанную с потерей атомами или ионами одного или нескольких электронов, а восстановлением — реакцию, связанную с приобретением атомами или ионами электронов. Реакции окисления и восстановления взаимосвязаны и не могут рассматриваться изолированно друг от друга. [c.146]

    Однако изменения одного типа атом испытывает и при обычных химических реакциях с поверхности атома могут удалиться несколько электронов или же на этой поверхности могут разместиться несколько дополнительных электронов, хотя электронное облако как таковое может при этом сохраниться. Это открытие позволило окончательно решить проблему ионов, ставившую в тупик три поколения химиков. [c.155]

    Атом состоит из маленького ядра (которое содержит большое число еще более мелких частиц) в центре и от одного до сотни электронов, распределенных по всему остальному объему атома. Иногда атом (или группа атомов) отщепляется от молекулы, оставляя ей один или несколько электронов. Таким атомам, конечно, этих электронов не хватает, а у оставшейся части молекулы они оказы- [c.109]


    Электроны наружного слоя, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних. Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие [c.99]

    Из сказанного следует, что в методе ВС каждая МО формируется из двух АО, а химическая связь объясняется взаимодействием двух электронов с антипараллельными спинами. Это наглядно и удобно, так как такая пара электронов аналогична валентному штриху в структурных формулах химических соединений. Однако существуют соединения, обусловленные химической связью с одним или несколькими электронами, обобществленными разными атомами, свойства которых трудно описать с помощью метода ВС. По этой причине большее распространение в настоящее время получил метод молекулярных орбиталей (метод МО), разработанный Малликеном, Гундом, Хюккелем и др. [c.31]

    В изоляторах ширина запрещенной зоны значительна— несколько электрон-вольт (рис. 53), а в полупроводниках она невелика (меньше 10" эв). При достаточно низкой температуре (в отсутствие действия света) полупроводник является изолятором, но при нагревании, начиная с той или другой температуры, указанный переход электронов становится возможным и тело приобретает некоторую проводимость, возрастающую с повышением температуры. (Подобный же эффект может вызываться и действием света). Переход электрона из валентной зоны в зону проводимости физически означает, что электрон перестает быть связанным с определенным атомом и становится способным перемещаться по объему кристалла. Такой переход некоторого числа [c.148]

    В таблицах приведены величины сродства к электрону для некоторых атомов, молекул и ра дикалов. В случае присоединения к атому нескольких электронов указывается их число. Недостаточно надежные данные заключены в скобки. [c.328]

    Это излучение соответствует энергии в несколько электрон-вольт и является ультрафиолетовым, или видимым. Для изменения вращательного и колебательного движения молекул энергии требуется в десятки и сотни раз меньше. Поэтому электронные переходы всегда сопровождаются изменениями в колебательном и вращательном движении, что отражается на спектре, который в этом случае показывает совокупность всех видов энергетических изменений в молекулах и называется электронно-колебательно-вращательным спектром. [c.72]

    Конечно, данный вывод относится также и к молекулярным ионам, т. е. к молекулам, у которых полностью изъяты один или несколько электронов. На примере метана видно, что на характер связи и ее энергию также влияет образование радикала атомной группы, к которой данная связь принадлежит. [c.109]

    При конкретных исследованиях молекулярного вращения в области нескольких электронных переходов наблюдаются сложные кривые ДОВ. Для детального анализа результатов эксперимента необходимо выделение отдельных кривых ДОВ для каждого электронного перехода, т. е. выделение парциальных кривых. Большую помощь в таком разложении может оказать спектр кругового дихроизма. [c.188]

    Энергетическое состояние атома с несколькими электронами определяется состоянием отдельных электронов. [c.8]

    Процессами окисления — восстановления называются реакции, сопровождающиеся переносом одного или нескольких электронов от одного из реагентов (восстановителя) к другому (окислителю). [c.102]

    Химические сдвиги уровней атомного остова позволяют различать атомы одного и того же элемента в разном окружении в молекуле или каком-то образце. Эти сдвиги невелики (не превышают нескольких электрон-вольт) и перекрывание линий разных элементов мало вероятно, учитывая, что для большинства из них наблюдается несколько линий. В то же время возможны, однако, случайные совпадения пиков химически неэквивалентных атомов одного элемента, так как интервал значений химических сдвигов не столь велик (- 10 эВ), даже имея в виду минимальную ширину линии (0,2 эВ). [c.141]

    Эффект Зеемана для нескольких электронов с учетом спина электрона имеет более сложный характер ( аномальный или сложный эффект Зеемана). Его рассмотрение следует проводить на основе квантовой механики. [c.254]

    О нескольких электронах атома, имеющих одно и то же значение п, говорят, что они относятся к некоторой общей электронной оболочке, энергетическому уровню или квантовому слою  [c.52]

    Если несколько электронов имеют одинаковые значения и главного, и орбитального квантовых чисел (комбинацию (п I)), то говорят, что они относятся к одной электронной подоболочке, энергетическому подуровню, квантовому подслою  [c.56]

    Особого внимания заслуживают также многоэлектронные электрохимические процессы. Одновременный перенос п электронов при протекании таких процессов возможен, если образование промежуточных соединений при последовательном переносе электронов энергетически невыгодно. В противном случае ввиду резкого возрастания энергии реорганизации при одновременном переносе нескольких электронов более выгодным оказывается постадийное протекание процесса разряда. Таким образом, возникает необходимость обсуждения особенностей кинетики электрохимических реакций с последовательным переносом нескольких электронов. Значительный интерес представляют также электрохимические системы, в которых на поверхности электрода при постоянном потенциале возможно одновременное протекание нескольких параллельных электродных процессов. На ход электрохимических реакций влияют образование окисных слоев и адсорбция органических соединений на поверхности металла. [c.298]


    Одна из трудностей исследования электроактивных промежуточных продуктов свободнорадикального характера, возникающих в ходе реакции на электроде, состоит в том, что во многих случаях значение потенциала их образования оказывается существенно более отрицательным по сравнению с равновесным значением стандартного потенциала Ео, характеризующего процесс дальнейщего электрохимического восстановления таких частиц. В результате одноэлектронная стадия реакции не выделяется, а радикальные частицы не успевают перейти в раствор и гибнут на поверхности электрода, присоединяя один или несколько электронов. Эту трудность можно обойти, заменив стадию электронного переноса с металла на разряжающуюся частицу фотоэмиссионным процессом генерации промежуточных продуктов. [c.217]

    Знание энергии расщепления полезно при объяснении свойств комплексов, у которых центральный ион имеет несколько -электронов. При малых Д электроны центрального иона в комплексе занимают те же орбитали, что и в свободном ионе, В соответствии с правилом Хунда, учитывающим взаимное отталкивание электронов, они стремятся заполнить орбитали по одному. После заполнения одиночными электронами всех орбиталей нижнего [c.44]

    Для составления более объективной характеристики изучаемого объекта обычно делают несколько электронно-микроскопических снимков, причем фотографируют не случайные места препарата, а взаимосвязанные в том или ином направлении, т. е. производится панорамная съемка. [c.147]

    Любая окислительно-восстановительная реакция в принципе может протекать по двум существенно различным механизмам химическому и электрохимическому. Условием химического механизма является непосредственное столкновение реагирующих частиц и переход одного или нескольких электронов от восстановителя к окислителю. Например, при сливании растворов солей железа (И) и церия (IV) происходит химическая реакция по уравнению  [c.5]

    При последовательном переносе нескольких электронов прежде всего возникает вопрос о том, какая из последовательных электрохимических стадий является лимитирующей. В принципе этот вопрос можно решить с энергетической точки зрения. Пусть, например протекает двухстадийная электрохими- [c.328]

    Особого внимания заслуживают также многоэлектронные электрохимические процессы. Одновременный перенос п электронов при протекании таких процессов возможен, если образование промежуточных соединений при последовательном переносе электронов энергетически невыгодно. В противном случае ввиду резкого возрастания энергии реорганизации при одновременном переносе нескольких электронов более выгодным оказывается постадийное протекание процесса разряда. Таким образом, возникает необходимость обсуждения особенностей кинетики электрохимических реакций с последовательным переносом нескольких электронов. [c.312]

    С ПОСЛЕДОВАТЕЛЬНЫМ ПЕРЕНОСОМ НЕСКОЛЬКИХ ЭЛЕКТРОНОВ. СТЕХИОМЕТРИЧЕСКОЕ ЧИСЛО [c.343]

    При последовательном переносе нескольких электронов прежде всего возникает вопрос о том, какая из последовательных электрохимических стадий является лимитирующей. В принципе этот вопрос можно решить с энергетической точки зрения. Пусть, например, протекает двухстадийная электрохимическая реакция О + еД. X + + ёД. Р, энергетический профиль которой показан на рис. 175. На первый взгляд может показаться, что лимитирующей должна быть первая стадия этого процесса, так как ее энергия активации по условию больше энергии активации второй стадии. Легко показать, однако, что этот вывод ошибочен. [c.343]

    Как отмечалось в начале этой главы, электрохимические реакции являются многостадийными. В частности, если в реакции участвует несколько электронов, то переход их через границу раздела происходит не одновременно, а последовательно. При этом последовательные стадии перехода отдельных электронов нередко бывают разделены химическими реакциями. Например, электрохимическая реакция восстановления кислорода до пероксида водорода [c.248]

    При сообщении атому энергии один или несколько электронов в нем могут перейти на более высокий энергетический уровень и атом становится возбужденным. В возбужденном состоянии атом находится очень короткое время 10 —10 с), после чего электроны возвращаются в нормальное состояние. При переходе электрона с более высокого энергетического уровня на более низкий излучается квант света и на спектре появляется линия. Согласно уравнению Планка (13.3), каждой спектральной линии соответствуют определенная энергия и частота колебания (длина волны). [c.238]

    В этом разделе при анализе спектры ЭПР интерпретируются с использованием в качестве базиса -орбиталей комплекса. Ковалентность связывания учитьгаается путем снижения параметра спин-орбитального взаимодействия и значения <г свободного иона. Базисные действительные орбитали смешиваются за счет спин-орбитального взаимодействия при использовании теории возмущений первого порядка и гамильтониана спин-орбитального взаимодействия I s. Приводятся результаты для нескольких -электронных конфигураций и в дальнейшем обсуждаются на отдельных примерах. Выражение для расчета компонент д-тензора уже обсуждалось. [c.225]

    Приведенные в таблице нецелые числа следует понимать как средние значения чисел, соответствующих нескольким электронным конфигурациям шести связывающим и трем атсмным орбиталям или семи связывающим и двум атомным орбиталям. Так, например, ядра никеля в металле должны быть в форме ионов Ni или Ni " с пятью или соответственно четырьмя d-электронами на трех или двух орбиталях и при числе неспаренных электронов, равном единице или нулю. Переход электронов со связывающих на несвязывающие уровни разрешен. [c.32]

    Числа электронов в атомах равно положительному заряду ядра, выраженному в едии19цах элементарного заряда. Атом элекх-ронейтрален. При удалении от атома одного или нескольких электронов образуется положительный ион, при присоединении к атому электрона — отрицательный шт. [c.7]

    Рассмотрим заполнение t g и орбиталей несколькими -электронами в октаэдрическом поле. При конфигурациях , (Р и электроны располагаются на одной, двух и трех -орбиталях в соответствии с правилом Гунда (рис. 56). При конфигурации четвертый электрон может занять свободную орбиталь, для чего нужна энергия 10 либо одну из 2я-орбиталей, уже занятую одним электроном. Для этого нужна энергия на преодоление межэлектронного отталкивания Еотт на орбитали при спаривании. Если поле сильное (10 0 > 60 , ), произойдет спаривание электронов на 2й- 0рбитали, если слабое (100 < 0. . ), электрон займет е -орбиталь (рис. 56). Как видно, силь- [c.123]

    Метод валентных связей. Представления об образовании молекулы водорода, развитые Гейтлером и Лондоном, были распространены и на более сложные молекулы. На этой основе возникла теория образования химических связей, которая получила название метода валентных связей. Этот метод основан на представлении о том, что атомы в молекуле удерживаются посредством одной или нескольких электронных пар, причем эти связи тем прочнее, чем в большей степени перекрываются электронные облака взаимодействуюших атомов. Обычно большая степень перекрывания электронных облаков наблюдается на прямой, соединяющей центры атомов. Комбинации двухэлектронных двухцентровых связей, которые отражают электронную структуру молекулы, называют валентными схема.ии. [c.47]

    Еще более универсальное определение кислоты и основания было предложено Г. Льюисом, пытавшимся распространить эти понятия не только на реакции с переносом протона, но и на все остальные. В этом определении основная роль отводится участию электронных пар нейтральных или заряженных частиц в химическом взаимодействии. Катионы, анионы или нейтральные молекулы, способные принять одну или несколько электронных пар, называются кислотами. Например, А1Гз — кислота, способная принимать электронную пару при взаимодействии с аммиаком  [c.75]

    М-, К-,. ..-серии (рис. А.8). Объяснение строения рентгеновских спектров предложено Косселем (1914 г.), который предположил, что существует закономерное соотношение между энергией электронов в атоме и их расстоянием от ядра. Рентгеновское излучение возникает в том случае, если ближайший к ядру э.тектрон выбивается из атома, а электрон, находившийся на более далеком расстоянии от ядра, занимает его место. При этом возникает излучение с частотой V, которое соответствует разности энергий этих двух электронных состояний. Очень важно то, что число рентгеновских серий значительно меньше суммарного числа электронов в атоме. Вероятнее всего, что в атоме всегда имеется несколько электронов, находящихся в приблизительно одинаковом энергетическом состоянии. Поэтому и возникло представление о том, что электроны в атоме распределены по оболочкам , причем все электроны каждой такой оболочки имеют одну и ту же энергию. Чем меньше энергия электрона, тем больше вероятность найти его на более далеком расстоянии от ядра, т. е. тем слабее он связан с ядром. Происхождение рентгеновских серий можно легко понять из рис. А.9. [c.40]

    В основе данного метода лежат представления о том, что во многих соединениях химическая связь приближенно может считаться двухцентровой и двухэлектронной. Поэтому электронная оболочка каждого атома представляется состоящей из нескольких электронных пар. Часть этих электронных пар является неподеленными, т. е. принадлежащими только одному атому, а другая часть — поделенными, т. е. принадлежащими двум атомам. Далее считается, что электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга. Таким образом предпо-.пагается, что электронные пары ведут себя так, как если бы они только взаимно отталкивались. Считается, что неподеленные электронные пары отталкиваются друг от друга сильнее, чем они отталкиваются от поделенных электронных пар. Наиболее слабое отталкивание приписывается отталкиванию между собой поделенных электронных пар. Если каждой электронной паре мысленно приписать предпочтительное нахождение в некоторой точке пространства, то расположение пар можно изобразить в виде вершин многогранника, который получается при соединении всех пар прямыми линиями. Например, если отталкиваются всего 2 электронные пары атома Э, то они будут располагаться под углом 180° друг [c.134]

    Окислительно-восстановительная реакция—реакция, в которой один реагент теряет, а другой приобретает один или несколько электронов, например НО.-ЬРе2+—>Н0--+-Рез+. [c.8]


Смотреть страницы где упоминается термин Несколько d-электронов: [c.30]    [c.79]    [c.82]   
Смотреть главы в:

Электронное строение и свойства координационных соединений Издание 2 -> Несколько d-электронов




ПОИСК





Смотрите так же термины и статьи:

Антисимметричные вращательные для нескольких электронов

Взаимодействие электрона с несколькими эквивалентными протонами

Орбиты атомные и проблема нескольких электронов

Случай нескольких валентных электронов. Метод псевдопотенциала в расчетах молекул

Электрохимические реакции с последовательным переносом нескольких электронов. Стехиометрическое число

Электрохимические реакции с последовательным переносом нескольких электронов. Стехиометрическое число . 65. Методы изучения многостадийных электродных процессов



© 2024 chem21.info Реклама на сайте