Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Явления адсорбции при образовании двойного электрического слоя

    Осн. св-ва Д. с. определяются поверхностными явлениями адсорбцией, образованием двойного электрического слоя и обусловленных им электрокинетических явлений, контактными взаимодействиями частиц дисперсной фазы. Размер частиц определяет оптич. (светорассеяние а др.) и молекулярно-кинетич. св-ва (диффузия, термофорез, осмос и др.). [c.82]

    Явления коагуляции и пептизации связаны с разрушением и образованием двойного электрического слоя. Адсорбция того или иного иона может привести к перемене знака заряда коллоидной частицы. Это состояние системы называют изоэлектрической точкой. Изоэлектрическая точка может быть охарактеризована концентрацией иона, pH раствора, ионной силой раствора. [c.421]


    ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электростатич. потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение Э. п. обусловлено пространств. разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя. На фанице между металлич. электродом и р-ром электролита пространств, разделение зарядов связано со след, явлениями переносом ионов из металла в р-р в ходе установления электрохим. равновесия, кулоновской адсорбцией ионов из р-ра на пов-сть металла, смещением электронного газа за пределы положительно заряженного ионного остова кристаллич. решетки, специфич. (некулоновской) адсорбцией ионов или полярных молекул р-рителя на электроде и др. Последние два явления приводят к тому, что Э. п. не равен нулю даже при условиях, когда заряд пов-сти металла равен нулю (см. Потенциал нулевого заряда). [c.424]

    ЯВЛЕНИЯ АДСОРБЦИИ ПРИ ОБРАЗОВАНИИ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ [c.213]

    Граница раздела твердых, жидких и газообразных фаз с распределенными вдоль нее ионными и молекулярными слоями представляет собой особый интерес для изучения. Это связано с тем, что на ней протекают процессы, в значительной мере определяющие характеристики физикохимической системы, состоящей из нескольких разнородных фаз. На поверхности раздела фаз, иначе говоря, в пограничном слое обычно проявляются нелинейные эффекты электрического поля, резкие изменения концентрации и скорости переноса вещества, явления адсорбции и разделения зарядов с образованием двойного электрического слоя. Здесь же происходит элементарный акт переноса электрона ч рез границу фаз при протекании электрохимической реакции. [c.8]

    Строение двойного электрического слоя для металлов группы платины в водных растворах электролитов отличается тремя главными особенностями 1) участием в образовании двойного слоя наряду с ионами раствора н молекулами растворителя адсорбирующихся на поверхности электрода атомов водорода и кислорода 2) ярко выраженным образованием прочных хемосорбционных связей между поверхностью металла и адсорбирующимися ионами, в результате чего многие, ионы при адсорбции частично или даже полностью теряют свой заряд (это явление получило название хемосорбции с переносом заряда) 3) диссоциативным необратимым характером адсорбции органических соединений. [c.182]


    Используя модель Гуи-Чепмена, удалось объяснить наблюдаемые на опыте явления. С ее помощью была объяснена зависимость емкости двойного электрического слоя от температуры. Однако и эта модель имеет недостатки. В частности, она не учитывает размеры ионов, их взаимодействие с другими ионами, стерические факторы. Об упущениях модели Гуи-Чепмена свидетельствует и то, что в ней не учитывается специфическая адсорбция ионов. Возникновение двойного электрического слоя может быть результатом специфической адсорбции катионов или анионов на электроде с образованием адсорбционных слоев. Адсорбированные ионы притягивают из раствора ионы противоположного знака и на поверхности металла появляется двойной электрический слой. Он может возникнуть и в результате адсорбции поверхностно-активных веществ, например полярных молекул воды. В частности, в водных растворах электролитов на поверхности металлов всегда имеется двойной электрический слой из-за адсорбции диполей воды. [c.128]

    Несколько упрощая вопрос, можно так объяснить наблюдаемые явления. Адсорбция ионов всякого вида стимулирует растворение, но в различной степени. Подмена одного адсорбированного иона другим, например вследствие изменения концентрации, может либо замедлить, либо ускорить растворение. Вместе с тем, нельзя забывать, что адсорбция ионов из раствора должна менять строение двойного электрического слоя, что, в свою очередь, может оказывать решающее влияние на скорость электродной реакции. Наконец, адсорбция может приводить к образованию весьма малорастворимых сочетаний атомов, что должно тормозить процесс, блокируя поверхность металла. [c.120]

    Трудно предположить, чтобы и в наших исследованиях большие органические ионы или молекулы при адсорбции растворялись в поверхностном слое электрода. Обнаруженную зависимость силы тока (скорости катодного процесса восстановления Н3О+) от времени можно было бы объяснить неравномерной адсорбцией ингибитора на участках с различным адсорбционным потенциалом [8]. Однако маловероятно, чтобы время адсорбции на различных участках поверхности значительно различалось, так как физическая адсорбция (а мы ее здесь предполагаем) — быстрый процесс. Поэтому, очевидно, причину наблюдающегося изменения силы тока при добавке в электролит органического ингибитора следует искать в иных явлениях. Было показано (стр. 130), что нри адсорбции молекул органических веществ или ионов строение двойного электрического слоя изменяется с образованием переходной зоны. Ее возникновение сопровождается вытеснением из двойного слоя ионов фона и молекул воды, изменением потенциала и pH в приэлектродном слое и затруднением диффузии ионов водорода к поверхности металла. Эти изменения, вызванные возникновением переходной зоны, про- [c.140]

    Таким образом, глубина проникновения частиц в поры перегородки под действием силы 5, а также способность их вымываться при регенерации являются функцией диаметра пор фильтровального материала, вязкости и размеров частиц исходной суспензии, скорости фильтрования или промывки, а также степени закупорки пор перегородки, характеризуемой пористостью осадка в капилляре. Если увеличение таких параметров, как вязкость промывной жидкости, скорость течения, а также отношение Did, активно влияет на увеличение выталкивающей силы в процессе регенерации и приводит к повышению эффективности этого процесса, то уменьшение пористости осадка, обусловленное его уплотнением, отрицательно сказывается на восстановлении фильтровальных свойств перегородки. Это связано с тем, что с повышением плотности осадка в порах увеличивается прочность сцепления частиц с поверхностью перегородки, определяемая силой трения, а также силами, возникающими при некоторых физико-химических явлениях, таких, как адсорбция, образование на стенках капилляров и вокруг частиц двойного электрического слоя и др. [c.23]

    Адсорбция ПАВ, которая может вызывать гидрофилизацию твердых частиц в воде, особенно первоначально гидрофобных частиц, казалось бы, должна приводить к стабилизации суспензий. Однако эти эффекты часто не ярко выражены, так как они маскируются электрическими явлениями на поверхности частиц— образованием диффузных двойных слоев ионов или их сжатием при повышении концентрации электролита (ионной силы раствора). [c.23]

    При соприкосновении двух электропроводящих фаз между ними возникает электрическая разность потенциалов, называемая напряжением Гальвани Дф или е, которая сама по себе не может быть измерена. Это явление связано с образованием двойного электрического слоя. Двойной электрический слой состоит из слоев диполей, которые образуются вследствие перехода электронного газа металла наружу за пределы решетки положительных ионов или вследствие адсорбции дипольных молекул из раствора, а также из зарядового двойного слоя, возникающего в результате взаимодействия двух поверхностных дипольных слоев и непосредственного межфаз-ного перехода носителей заряда [2]. Простейшее представление о строении двойного электрического слоя дал Гельмгольц, согласно представлениям которого избыточные заряды размещаются по обеим сторонам поверхности раздела фаз в двух параллельных слоях, расположенных на небольшом расстоянии. Таким образом,электрический слой можно уподобить плоскому конденсатору. Более глубокое представление о строении двойного электрического слоя дали Гуи, Чапмен, Штерн и др. [4—6]. В общем принято считать, что двойной электрический слой по своему строению представляет один или несколько параллельно включенных конденсаторов, измеряя емкость которых можно получить представление о строении и составе двойного электрического слоя. [c.97]


    Шх слоев, Сообщающих агрегативную устойчивость суспензиям. Адсорбция ионов частицами суспензий, как и в золях, может со-йровождаться образованием двойного электрического слоя с определенной величиной С-потенциала. В других случаях та же адсорбция ионов может, наоборот, повести к снижению С-потен-1щала и к агрегации (коагуляции) суспензий. В явлениях, связанных с ионной адсорбцией и изменениями С-потенциала, суспензии принципиально не отличаются от золей, и в дальнейшем мы останавливаться на них не будем. [c.244]

    Двойной электрический слой существует и на границе раздела раствор электролита / изолятор, если на последнем имеется фиксированный заряд. Появление заряда на поверхности изолятора может быть обусловлено переносом ионов определенного знака с поверхности ионного кристалла в раствор, адсорбцией ионов, наличием поверхностных ионизируемых групп (например, в полимерных материалах) и т. д. Образование двойного электрического слоя оказывает сильное влияние на подвижность заряженных коллоидных частиц, свойства пористых и других мембранных систем. Все эти явления объединяются термином электрокинети-ческие явления. [c.163]

    Современные иредстазления о механизме электроки-нетических явлений основываются на идее о существовании двойного электрического слоя, состоящего из монослоя ионов одного знака на поверхности твердой фазы и эквивалентного количества противоположно заряженных ионов, находящихся в жидкости, вблизи межфазной поверхности, В образовании двойного электрического слоя преобладающую роль играют процессы диссопна-ции поверхностных молекул и адсорбции ионов из окружающего раствора. Согласно правилу Панета — Фаянса [23] преимущество в адсорбции на поверхности частиц имеют те ионы, которые образуют с противоположно заряженными конами решетки труднорастворимые соединения. Знак заряда поверхностных ионов у соединений с амфотерными свойствами зависит от pH среды. [c.13]

    Прежде чем остановиться на адгезионных характеристиках фосфатных вяжущих материалов, необходимо рассмотреть физико химическую сущность адгезий. В настоящее время распространены электрическая, адсорбционная и диффузионная теория адгезии, Поскольку диффузионная теория, видимо, неприменима для работы большинства минеральных вяжущих веществ, остановимся на первых двух. > По электрической теории Б. В. Дерягица и Н. А. Кротовой [1], адгезия обусловливается электростатическим притяжением зарядов двойного электрического слоя, образующегося на поверх-, дости раздела адгезив —. субстрат, причем отрыв клеящего вещества (адгезива) представляет собой процесс разведения обкладок микроконденсатора до наступления газового разряда. По этой теории адсорбционные явления необходимы лишь для перераспределения электронов на границе раздела, в результате чего обеспечивается двойной электрический слой. Возникновение двойного электриче- ского заряда возможно как результат ориентированной адсорбции полярных функциональных групп клея. Данные о клеящей способности полимеров показывают также на существенную роль химического фактора в процессе образования двойного электрического слоя [2]. / [c.99]

    Явления изменения концентрации раствора при образовании двойного слоя были впервые обнаружены на платиновом электроде Фрумкиным и А. Д. Обручевой. Эти явления были названы Э. Ланге потен-циалопределяющей адсорбцией. Изменения состава раствора могут быть использованы для изучения строения двойного электрического слоя на платиновом электроде. Для этого тщательно промытый и высушенный в атмосфере водорода электрод введем в контакт с раствором НаЗО , насыщенным водородом. При соприкосновении с раствором часть адсорбированного на электроде атомарного водорода ионизируется и переходит в раствор. Если в растворе нет посторонней соли, то ионы Н,0+, образовавшиеся по уравнению реакции [c.30]

    Поверхностные явления самопроизвольно ведут к уменьшению поверхностной энергии. Они обусловливаются снижением поверхности раздела фаз и/или поверхностного натяжения. Снижение поверхности раздела фаз ведет к укрупнению частиц в результате коагуляции и коалесценции (слиянию капель эмульсии). Поверхностное натяжение определяется з - удельной свободной поверхностной энергией. Изменение поверхностного натяжения ведет к адсорбции, адгезии и электрическим процессам с образованием двойного слоя и электрокинетическим явлениям. Применительно к прикреплению бактерий, как уже отмечалось, процесс был подробно изучен Д.Г. Звягинцевым. Во многом поведение суспензии бактерий протекает аналогично адсорбции на поверхности. Образование биопленок начинается с контакта клеток с поверхностью. [c.63]

    Коллоидные явления обусловливают устойчивость суспензий планктонных организмов, нарушение которой приводит к их оседанию, например в конце цветения. Устойчивость дисперсных систем означает способность сохранять свой состав. Различают седиментационную и агрегативную устойчивость. Седиментационная устойчивость определяется способностью частиц противостоять оседанию под действием силы тяжести и зависит от дисперсности. Противодействует оседанию сила трения в дисперсионной среде и броуновское движение. Агрегативная устойчивость подразумевает сохранение межфазовой поверхности и поверхностной энергии. Она определяется способностью противостоять слипанию частиц с образованием агрегатов. Для твердых частиц слипание называется коагуляцией. Процесс этот имеет олгределяющее значение в микробиологии, например при очистке вод , когда коагулировавшие хлопья оседают. Изменение агрегативной устойчивости обусловливается присутствием электролитов, влияющих на двойной слой. Специфическая адсорбция ионов на поверхности приводит к ослаблению электрического потенциала и слипанию частиц. Повышение заряда потенциалобразующего слоя приводит к увеличению диффузного слоя. При концентрационной коагуляции происходит сжатие диффузного слоя. Такие изменения происходят в почве, когда избыток Йа приводит к вымыванию Са и М , нарушению структуры двойного слоя и концентрационной коагуляции. Порог коагуляции - это наименьшая концентрация электролита, при которой начинается коагуляция. Есть эмпирическое правило Шульце-Гарди, описывающее коагуляцию. Чем выше валентность коагулирующего иона, тем меньше его нужно для коагуляции порог коагуляции обратно пропорционален шестой степени валентности иона электролита Однако многовалентные ионы могут перезаряжать поверхность меняя величину и знак -потенциала. Эти процессы важны дл сорбции на слизях коллоидов тяжелых металлов, например Ре и А1 [c.64]


Смотреть страницы где упоминается термин Явления адсорбции при образовании двойного электрического слоя: [c.510]    [c.13]    [c.22]   
Смотреть главы в:

Теоретическая электрохимия -> Явления адсорбции при образовании двойного электрического слоя




ПОИСК





Смотрите так же термины и статьи:

Адсорбция и двойной слой

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой образование



© 2025 chem21.info Реклама на сайте